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ABSTRACT 
In this article we present LightTracker – an open source toolkit for 

vision-based multi-touch setups. Using this toolkit, we can 

dynamically create and manipulate the image processing pipeline 

at runtime. After presenting various new requirements derived 

from hardware configurations as well as literature review, features 

and shortcomings of available tracking solutions are discussed 

and compared to our proposed toolkit. This is followed by a 

detailed description of the toolkits functionality including the 

filter chain and the improved calibration module. We also present 

implementation details such as the plugin system and the multi-

threaded architecture. To illustrate the advantages of the toolkit, 

an interactive gaming couch table based on LightTracker is 

introduced.  

Categories and Subject Descriptors 
D.5.2. [Information Interfaces]: User Interfaces—Input devices 

and strategies; graphical user interfaces; prototyping. D.2.2 

[Software Engineering]: Design Tools and Techniques— User 

interfaces. 

Keywords 

Multi-touch, Interactive Surfaces, Computer Vision, Tabletop, 

Toolkit  

1. INTRODUCTION 
Interactive multi-touch displays and tables have attracted a lot of 

attention over the past years and are increasingly becoming 

popular in different domains including gaming [2][3] 

[8][16][17][18], entertainment, and museum/art installations [24]. 

Currently, there are two possibilities to start with the development 

of tabletop applications. One is to get an all-in-one solution, 

where several companies are providing hard- and software 

solutions [20]. Very often, these solutions are not flexible enough. 

The rendering PC (Intel Core 2 Duo @ 2.13 GHz) of the 

Microsoft Surface, for example, cannot be upgraded easily.  

Moreover, the table itself is not designed to be customized. 

Alternatively, do it yourself (DIY) multi-touch tables based on 

optical tracking are increasingly becoming interesting. Hardware 

solutions based on Frustrated Total Internal Reflection (FTIR) 

[11] and Diffused Illumination (DI) [19] have enabled the low-

cost development of such surfaces. Several online communities 

and discussion groups provide enough details for the development 

of vision-based multi-touch setups. In addition, different 

community-driven open source tracking solutions have emerged. 

These tracking solutions provide an excellent starting point, since 

they offer enough functionality for simpler setups. Most suffer 

from a monolithic design tailored to the most common hardware 

setups and provide only little variation by tweaking certain 

parameters. While developing non-standard multi-touch setups, 

we found ourselves spending a lot of time trying to extend 

solutions like Touchlib [28] and CCV [5] to fulfill our 

requirements. Due to the inflexible design of these trackers this 

proved to be more complicated than we had thought. 

From this experience, we derived a list of requirements, which an 

ideal tracking solution should satisfy: 

 Run-time setup of a custom image-processing pipeline 

using a modular system, 

 Clean API for easy extensions in the form of shared 

libraries, 

 Support for Multicore-CPUs, 

 Support for touch and marker tracking in one combined 

pipeline, 

 Multiple camera support, and 

 Improved support for setups using wide-angle lenses. 

In this paper, we present LightTracker, a modular and open source 

multi-touch toolkit. LightTracker addresses all of these 

requirements by providing an easy-to-use toolkit with a highly-

flexible and multi-threaded image-processing pipeline, an 

improved calibration procedure and a strong focus on 

extensibility.
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Figure 1: A schematic view of the image processing pipeline showing example output at each stage.

2. RELATED WORK  
As proposed by Echtler et al., we can divide the multi-touch 

libraries and toolkits into two groups: low-level input processing 

tools and high-level interaction software [7]. 

2.1 Low-level input processing tools 
Touchlib was one of the first vision-based open source multi-

touch solutions created for the Microsoft Windows platform. The 

library itself is linked directly into the multi-touch application. 

The image processing pipeline can be tweaked by editing a XML 

configuration file. This provides a certain degree of flexibility but 

changes in the pipeline cannot be performed at runtime, but need 

a restart of the application. It also lacks a proper GUI. 

BBTouch is another open-source multi-touch library implemented 

with Cocoa and Objective C and therefore only available for 

MacOS systems [1]. The BBTouch platform offers a compact GUI 

for tweaking different parameters. It also offers a unique 

calibration method in comparison with all other open source 

tracking solutions but provides no means for editing the filter 

pipeline as with Touchlib. 

Touchè is another tracking library primarily designed for the 

MacOS system [27]. In contrast to other trackers, Touchè comes 

with a mature graphical user interface, which allows programmers 

to change a lot of parameters of the different filters in the image 

processing pipeline but operates also on a fixed filter pipeline. 

Community Core Vision (CCV) is a popular open-source and 

cross-platform solution for multi-touch tracking [5]. CCV 

supports image processing on the GPU. Newest builds also 

support multiple camera setups. As with most other solutions it 

comes with a fixed image processing pipeline and doesn‘t take 

advantage of multicore systems. 

A newer project called movid (Modular Open Vision Interaction 

Daemon) takes a different approach by providing the dynamic 

creation of filter graphs using a node-based interface [21]. These 

graphs can be created using a browser. It‘s also the only solution 

which aims at combining touch and marker tracking as well as 

supporting image processing using more than one thread. movid 

is, at the time of this writing, not available as a binary as a first 

official release is still under development. 

ReacTIVision is another open-source computer vision library 

used for multi-touch setups [14]. In contrast to the 

aforementioned tools it was primarily designed for table-based 

tangible user interface and is also able to track fiducial markers. It 

offers a limited GUI and no mechanism to adapt the image 

processing pipeline to nonstandard setups. 

2.2 High-level interaction libraries 
To develop applications which take advantage of the multi-touch 

input generated by the aforementioned low-level input processing 

tools several libraries and toolkits exist. 

Commercial tabletops are usually shipped together with a high-

level multi-touch library. One of the first tabletop solutions was 

the DiamondTouch [6], a non-optical table, which came with the 

high-level SDK DiamondSpin [26]. 

The Microsoft Surface SDK is another high-level multi-touch 

library, which works smoothly with the Microsoft Surface. The 

combination with the Windows Presentation Foundation (WPF) 

and XNA provides a rapid prototyping of games and installations. 

The Microsoft Surface SDK is limited to the Surface hardware. 

Squidy is an interaction library, which unifies various device 

drivers, frameworks and tracking toolkits in one common library 

and provides a visual design environment [15]. A corresponding 

visual user interface hides the complexity of the technical 

implementation by providing a simple visual data flow 

programming interface.  

PyMT [12], is a Python-based multi-touch environment, which 

allows users to prototype faster multi-touch applications. By 

providing a variety of multi-touch widgets, and easy to access 

advanced features, programmers can quickly write tabletop 

applications. Finally, there is also MT4J [22], which in contrast to 

PyMT, is based on Java.   

Using this classification into low-level and high-level libraries, 

LightTracker falls into the first category improving on some of the 

aforementioned shortcomings of other solutions.  

3. LIGHTTRACKER 
With LightTracker, users can dynamically create and manipulate 

the image-processing pipeline at run-time (cf. Figure 1). The 

toolkit is primarily designed for touch tracking, but the pipeline 

can easily be extended for other image processing tasks, for 

example marker tracking. 

 



 

Figure 2: The four plugin sections of the LightTracker: The 

image created by the source (A) is processed by the filter chain 

(B), analyzed by the tracker (C), and the resulting blobs, after 

conversion by the calibration, are forwarded to the application 

by the sink (D).  

Users are able to arrange the image processing pipeline by 

choosing individual modules from a pool of plugins, including: 

 At the beginning of the pipeline there is a single source 

plugin (Figure 2 (A)). This plugin is responsible for 

providing image data for the pipeline. Possible 

implementations include simple camera sources, video 

players or plugins which stich together multiple image-

sources into one combined image.  
 The source plugin passes the source image to the first filter 

plugin of the filter chain (Figure 2 (B)). These plugins 

perform image processing and pass the resulting image to the 

next filter of the chain. Examples include background 

subtraction filters, threshold filters or more complex 

functionality like marker tracking. The screenshot in Figure 2 

(B) shows a pipeline with four different filters. 

 The last filter in the chain passes the resulting image to a 

tracker plugin (Figure 2 (C)). This plugin takes the image 

and performs blob tracking. The result of the tracker plugin 

is a list of tracked blobs. 

 The tracker plugin passes this list to the calibration module 

of the pipeline, which transforms the blob values from 

camera coordinates into screen coordinates. The calibration 

module is not visible in Figure 2 as it has its own UI and is 

explained in detail in Section 3.2. 

 After the calibration step, the blobs are forwarded to the sink 

plugin (Figure 2 (D)). This plugin is the last in the chain and 

responsible for encoding and sending the blob data to an 

application. Possible implementations include a TUIO [13] 

sink plugin encoding the touch data in the popular TUIO 

protocol and sending the data to the client over UDP. 

 

The resulting image processing pipelines can be saved using a 

XML file format. By loading different pipeline setups, we can 

quickly switch between differently specialized pipelines. This 

allows us to define and manage different pipelines for touch-

tracking only as well as a combined marker and touch-tracking 

pipelines for the same hardware setup. 

3.1 Filter Chain 
The filter chain is at the heart of every touch tracking solution. 

This is where the image from the source is processed in a way that 

good blob tracking results can be achieved. Consequently, this is 

where the most user customization is required.  

With the exception of movid [21], all existing open source touch 

tracking solutions provide a fixed filter pipeline with a standard 

set of filters which cannot be rearranged at runtime. 

Customization is only achieved by tweaking parameters of the 

individual filter steps. In contrast, LightTracker‘s filter chain 

allows users to assemble a chain of image processing filters of 

arbitrary length. Filters can be added, removed and re-ordered 

dynamically at run-time. The result of each modification can be 

observed immediately in the preview of each filter. Consequently, 

we can prototype filter chain ideas more easily as well as offer a 

lot more flexibility when building non-standard multi-touch 

setups. 

 

Figure 3: Users can dynamically add new filters by clicking 

the ‘+’ button displayed at all possible locations in the filter 

chain. 

In comparison to the graph-based approach of movid, which 

provides branching of the filter pipeline, the single filter chain 

approach of LightTracker offers less flexibility. On the other hand 

no image copying operations between filter steps are required. 

To enable a more detailed view of the resulting image, single 

plugins can be maximized, as well as minimized to free space for 

other plugins, aiding with the fine tuning and debugging of the 

filter chain. 

By clicking one of the ‗+‘ buttons in between filters, a list of all 

available filter plugins is displayed (cf. Figure 3). By selecting a 

plugin from the list, it is inserted into the pipeline (cf. Figure 4).  

Removing a filter from the chain is achieved by pressing the ‗x‘ 

labeled button located in the upper right corner of each filter. 

 



 

 

Figure 4: Inserting a filter into the pipeline. 

3.2 Calibration 
LightTracker‘s calibration process is similar to that of other 

tracking applications: In a multi-screen environment, users first 

have to choose a screen to calibrate. On the chosen screen a 

borderless full screen window is displayed showing a configurable 

clipping rectangle. This rectangle defines the area in which 

touches are ―accepted‖. Inside this clipping rectangle a 

configurable amount of points is arranged. When starting the 

calibration process the user has to touch these points on the screen 

one after the other. This results in point pairs linking camera 

coordinates (the touches in the camera image) with screen 

coordinates (the screen coordinates of the points). By grouping 

adjacent point pairs into quads we can calculate the perspective 

transformation which links the quad in camera coordinates with 

the quad in screen coordinates. Therefore, enabling us to translate 

any point in camera coordinates inside a quad, into the 

corresponding point in screen coordinates.  

This transformation delivers ―correct‖ values only under the 

assumption that the camera image does not suffer from nonlinear 

distortions. Otherwise touch points which do not directly lie on 

the calibration points will deviate from the expected position in 

screen space. This problem can be observed when using an ultra-

wide angle camera lens such as a fisheye lens which suffers from 

high amounts of barrel distortion. With other tracking solutions 

the magnitude of this positional error can be reduced by choosing 

a higher amount of calibration points. However this in turn makes 

calibration a longer and more tedious process.  

  

Figure 5: Linear (left) and spherical distribution (right) of 

calibration points. 

To improve on this, LightTracker offers different distribution 

functions for the calibration points (Figure 5). By distributing the 

points in a nonlinear fashion, more calibration points are provided 

only in areas where a high amount of nonlinear distortion is 

present. For fisheye lenses this is the case in the border regions of 

the image. Through this it is possible to get better precision in 

areas where needed (see Figure 6, left) while resulting in a shorter 

overall calibration time. At the moment only a linear and a 

spherical distribution function is implemented but additional 

functions can be added easily. 

 

Figure 6: Due to nonlinear distortions in the border regions a 

spherical distribution of calibration points (left) yields better 

results than a linear distribution (right) while using the same 

amount of calibration points. 

4. APPLICATION CASE: GAMING 

COUCHTABLE 
To demonstrate the performance of LightTracker, we implemented 

a tabletop multi-touch setup based on DI tracking. The main goal 

was to create an interactive couch table for playing games which 

would also function well as a normal piece of furniture in an 

ordinary living space under conditions such as changing ambient 

lighting. Figure 7 illustrates a couple of design steps of the table.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7: Starting from first paper mockups of possible tables 

(a) and the final design (b) a first full size prototype was built 

(c). The last image (d) shows the final table. 

The various design iterations will not be discussed in this paper. 

Instead, we will focus on how details of the final setup influenced 

the configuration of the image processing pipeline using 

LightTracker. 

 



4.1 Hardware 
In comparison to other multi-touch tables, the most outstanding 

feature of our couch table is its very low height in relation to the 

size of the screen. The table is only about 15 inches high 

measuring a screen diagonal of 46 inches. Adjacent to the screen, 

and of the same height, there is a wooden sideboard, which can be 

used as additional space for depositing objects. Under the 

sideboard there is enough space for the PC and the projector. On 

both sides of the table, beneath the screen, we added additional 

storage compartments for magazines. 

The limited space inside the table is housing a short-throw 

projector (Hitachi CP-A100), the rendering PC, one high 

resolution camera (Pointgrey Flea 2) with a fisheye lens (185° 

FOV) as well as IR-LED strips for illumination. 

 
Figure 8: A camera with a fisheye lens in the middle of the 

table is used for tracking. To display the image a short-throw 

projector is used. In the background one of the magazine 

compartments can be seen constraining the space inside the 

table. 

Due to the low height of the table and the size of the screen we 

had the choice of either using a single camera setup with a very 

wide angle lens or to arrange two or more cameras inside the table 

in such a way that each of them covers only a part of the screen. 

Because of the space restrictions imposed by the two magazine 

compartments we decided to use a single camera with a fisheye 

lens (cf. Figure 8). 

Based on this hardware setup we observed two problems which 

cannot be solved easily with state-of-the-art multi-touch solutions: 

 Distortion of the camera image due to fisheye lens. 

 Uneven lighting especially in border regions due to 

limited space within the table. 

The first problem can be solved using the nonlinear distribution of 

calibration points in LightTracker‘s calibration module (cf. 

Section 3.2). The solution to the second problem as well as the 

general setup of the filter chain is discussed in more detail in the 

following section. 

4.2 Filter Chain 
As a starting point for our filter chain setup, we looked at existing 

tracking solutions and their filter setups. The resulting image 

processing pipeline for the table looked as follows: 

 Background subtraction filter, 

 ReacTIVision marker tracking filter, 

 High-pass filter, 

 Blur filter, and 

 Threshold filter. 

This filter chain worked reasonably well for the center part of the 

screen. However in some regions blob tracking as well as marker 

tracking did not produce usable results. Uneven lighting inside the 

table as well as the vignetting effects of the camera lens resulted 

in a brightness falloff in the image for border areas of the screen. 

Consequently, blobs in that area could not be detected reliably.  

Due to the special shape of the couch table an even light 

distribution inside the table is practically impossible. Likewise the 

vignetting effect of our fisheye lens can only be countered by 

using more expensive hardware. That is why we decided to 

approach this problem by adding a custom filter to the filter chain, 

the so called ―Intensity Map‖ filter. It adjusts the brightness of the 

images on a per-pixel basis. Hence areas with darker blobs are 

getting lighted up to the same level as areas, which produce 

lighter blobs. 

The filter requires a calibration step in which the intensity for 

each pixel in the camera image is determined when light is 

reflected at that position. This is done by capturing a reference 

image when the whole touch surface is covered with a material, 

which has comparable reflective properties as fingers or other 

objects later used for interacting with the table. In our case, we 

use a piece of cotton cloth. The calibration process and the 

resulting reference image for our setup can be seen in Figure 9. 

  

Figure 9: The calibration process for the intensity map filter 

(left) and the resulting reference image illustrating the uneven 

lighting situation (right). 

For every pixel in this reference image the filter calculates the 

factor with which it would have to multiply the value to get a fully 

lit pixel and stores this factor inside a texture. By multiplying the 

incoming images with this texture the filter selectively brightens 

up darker areas in these images (cf. Figure 10). 

This can only be used for smaller variations in image brightness. 

When used for very dark areas the filter leads to high 

multiplication factors, which also results in a strong amplification 

of artifacts like image noise. Hence the filter cannot replace even 

lighting altogether but helps to achieve a more even brightness 

distribution in the image and therefore leads to a more stable blob 

tracking. 



  

Figure 10: By putting a white sheet of paper on the table we 

can visualize the effect of the intensity map: On the left we see 

the unprocessed image showing uneven lighting (vertical 

stripes) as well as vignetting effects (brightness falloff at the 

bottom). The right image shows the processed image showing a 

more even brightness distribution. 

The final image processing pipeline, for combined touch and 

marker tracking, including the ―Intensity Map‖ filter is depicted in 

Figure 11. Each step offers the possibility to tweak certain 

parameters. 

 

 

Figure 11: The final filter chain used for the table setup. 

5. IMPLEMENTATION 
LightTracker is implemented using C++, Qt [25] and OpenCV 

[23]. To provide more flexibility, every part of the pipeline – 

except for the calibration – is implemented using a plugin 

mechanism. 

5.1 Plugin System 
LightTracker already provides a set of common plugins and new 

ones can easily be created via an API. Each of the plugin types 

(source, filter, tracker, sink) has a base class with a lightweight 

interface from which new plugins can be derived. By compiling 

the derived plugin as a shared library and placing the library in a 

subdirectory, it is automatically loaded by LightTracker and ready 

to be inserted into the pipeline. 

To facilitate the creation of custom plugins, our API already 

provides a lot of common functionality in the base classes of the 

plugin types. A minimal user interface providing a preview image 

of the plugin result, buttons to maximize, minimize and remove 

the plugin, as well as a checkbox to enable and disable the plugin, 

is automatically generated as part of every plugin. Developers can 

easily extend this user interface with custom controls for the 

specific functions of their plugin (cf. Figure 12). 

 

 

Figure 12: The graphical user interface of a simple filter 

plugin. The encircled controls have been added by the 

developer in addition to the standard controls from the base 

class. 

Another feature inherited from the base classes is the property 

system. When creating a new plugin, users can save member 

variables in a property table. Consequently, these variables get 

serialized automatically once the whole pipeline is saved by the 

user as well as de-serialized when loaded. 

5.2 Threading 
Most open-source multi-touch trackers do not utilize the 

multicore architecture of modern computers by implementing the 

image processing pipeline in a single thread. The LightTracker-

toolkit on the other hand was designed with a multi-threading 

architecture; thus enabling better performance on multicore 

systems.  

Threading in LightTracker is implemented on a ―per-image‖ 

basis. Rather than using a single thread for each plugin as for 

example implemented in movid [21], a single thread is 

responsible for executing the whole pipeline on a single frame. 

This minimizes the synchronization overhead between plugins. 

One limitation of this frame-based threading approach is that 

plugins cannot easily access results from previous frames. For 

example, it is not possible for frame(t) to access the result of 

frame(t-1) if processing of this frame is still executing in a 

different thread. This limitation could be overcome by 

implementing a mechanism which would synchronize between 

different threads but this would have a negative impact on 

performance. 

During our tests, however, we found that this limitation was an 

acceptable drawback for the performance gain and should the 

need for such a mechanism arise, this could easily be integrated 

into the current system at a later point in time. 
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Figure 13: Multi-threading control flow in LightTracking: 

The SourceWorker thread is assigning created images to a 

PipelineWorker thread from the pool. 

The multi-threading architecture of LightTracking Toolkit is 

implemented using two types of worker threads: SourceWorker 

and PipelineWorker (see Figure 13).  

A single SourceWorker operates on the source plugin by checking 

in a continuous loop if a new image is ready to be processed. If an 

image is ready, the image and the current pipeline are assigned to 

a free PipelineWorker from the thread pool. Multiple 

PipelineWorkers process the images, applying the filter plugins, 

executing the tracker plugin, performing the calibration, and 

executing the sink plugin.  

The number of PipelineWorker threads in the thread pool is 

initially calculated based of the real and logical number of 

processor cores in the system. This number can be adjusted in the 

application settings and represents the maximum number of 

images, which can be processed simultaneously. If the 

SourceWorker thread has a new image but all threads in the 

PipelineWorker pool are busy the image gets discarded to prevent 

too much latency between creation and processing of an image. 

5.2.1 Evaluation 
To evaluate a possible performance gain of our multi-threaded 

architecture on systems with more than one processor core, we 

implemented a traditional single threaded image processing path 

alongside the multi-threaded one. Using these two paths, we ran 

some initial tests measuring the frame rate. We used a single 

system equipped with a quad core processor (Intel Core 2 Quad 

Q9400 @ 2.66 GHz) and deactivated three and two of the cores to 

simulate a single and dual core system respectively.  

We used a CPU intensive filter chain for our measurements 

determining the possible gain under heavy load. We measured the 

amount of frames processed in one minute and ran this test 5 

times for each configuration. The average results are depicted in 

Figure 14.   

 

Figure 14: Results from our initial performance test. 

Using the single-threaded approach frame rate is nearly identical 

for all processor configurations. The small performance advantage 

of the multicore configurations can be attributed to the fact that 

the GUI thread of the application as well as other processes 

running in the background can be executed on a separate core. 

Using two and four threads the performance on multicore 

configurations increases significantly. On the quad core 

configuration about 3.3 times more frames could be processed 

when using 4 threads (1002 fpm) in comparison to the single 

threaded approach (307 fpm).  

6. CONCLUSION AND FUTURE WORK 
In this paper, we presented LightTracker – a highly modular open 

source touch tracking toolkit. We listed the shortcomings of other 

open source touch tracking libraries we have discovered while 

building multi-touch setups and described how LightTracker tries 

to avoid these. The highly modular filter chain at the heart of our 

tracking solution and our improvements to the calibration process 

of multi-touch setups using camera lenses with non-linear 

characteristics have been presented. As an example of how to 

successfully adapt LightTracker to non-standard hardware setups, 

we demonstrated our gaming couch table.  

The implementation part introduced the design of the plugin 

system and illustrated the creation of custom plugins as well as 

showing the multi-threaded approach of LightTracker and the 

performance gains which can be achieved with this architecture 

on multicore systems. 

At the moment additional LightTracker plugins are still actively 

developed. Work on a multi-camera source plugin, stitching 

together the images of multiple cameras, has been started. 

LightTracker is being released for the Microsoft Windows 

platform under the GNU General Public License [10]. As all of 

the libraries used are cross-platform, future releases for other 

platforms should be possible. 
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