
LightTracker: An open source multi-touch toolkit
Adam Gokcezade, Jakob Leitner, Michael Haller

Media Interaction Lab
Upper Austria University of Applied Sciences

Hagenberg, Austria

mi-lab@fh-hagenberg.at

ABSTRACT
In this article we present LightTracker – an open source toolkit for

vision-based multi-touch setups. Using this toolkit, we can

dynamically create and manipulate the image processing pipeline

at runtime. After presenting various new requirements derived

from hardware configurations as well as literature review, features

and shortcomings of available tracking solutions are discussed

and compared to our proposed toolkit. This is followed by a

detailed description of the toolkits functionality including the

filter chain and the improved calibration module. We also present

implementation details such as the plugin system and the multi-

threaded architecture. To illustrate the advantages of the toolkit,

an interactive gaming couch table based on LightTracker is

introduced.

Categories and Subject Descriptors
D.5.2. [Information Interfaces]: User Interfaces—Input devices

and strategies; graphical user interfaces; prototyping. D.2.2

[Software Engineering]: Design Tools and Techniques— User

interfaces.

Keywords

Multi-touch, Interactive Surfaces, Computer Vision, Tabletop,

Toolkit

1. INTRODUCTION
Interactive multi-touch displays and tables have attracted a lot of

attention over the past years and are increasingly becoming

popular in different domains including gaming [2][3]

[8][16][17][18], entertainment, and museum/art installations [24].

Currently, there are two possibilities to start with the development

of tabletop applications. One is to get an all-in-one solution,

where several companies are providing hard- and software

solutions [20]. Very often, these solutions are not flexible enough.

The rendering PC (Intel Core 2 Duo @ 2.13 GHz) of the

Microsoft Surface, for example, cannot be upgraded easily.

Moreover, the table itself is not designed to be customized.

Alternatively, do it yourself (DIY) multi-touch tables based on

optical tracking are increasingly becoming interesting. Hardware

solutions based on Frustrated Total Internal Reflection (FTIR)

[11] and Diffused Illumination (DI) [19] have enabled the low-

cost development of such surfaces. Several online communities

and discussion groups provide enough details for the development

of vision-based multi-touch setups. In addition, different

community-driven open source tracking solutions have emerged.

These tracking solutions provide an excellent starting point, since

they offer enough functionality for simpler setups. Most suffer

from a monolithic design tailored to the most common hardware

setups and provide only little variation by tweaking certain

parameters. While developing non-standard multi-touch setups,

we found ourselves spending a lot of time trying to extend

solutions like Touchlib [28] and CCV [5] to fulfill our

requirements. Due to the inflexible design of these trackers this

proved to be more complicated than we had thought.

From this experience, we derived a list of requirements, which an

ideal tracking solution should satisfy:

 Run-time setup of a custom image-processing pipeline

using a modular system,

 Clean API for easy extensions in the form of shared

libraries,

 Support for Multicore-CPUs,

 Support for touch and marker tracking in one combined

pipeline,

 Multiple camera support, and

 Improved support for setups using wide-angle lenses.

In this paper, we present LightTracker, a modular and open source

multi-touch toolkit. LightTracker addresses all of these

requirements by providing an easy-to-use toolkit with a highly-

flexible and multi-threaded image-processing pipeline, an

improved calibration procedure and a strong focus on

extensibility.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Source
FilterFilterFilter Tracker Calibration Sink

add cur 1 xpos 0.45 …

add cur 2 xpos 0.62 …

set cur 1 xpos 0.46 …

…

Figure 1: A schematic view of the image processing pipeline showing example output at each stage.

2. RELATED WORK
As proposed by Echtler et al., we can divide the multi-touch

libraries and toolkits into two groups: low-level input processing

tools and high-level interaction software [7].

2.1 Low-level input processing tools
Touchlib was one of the first vision-based open source multi-

touch solutions created for the Microsoft Windows platform. The

library itself is linked directly into the multi-touch application.

The image processing pipeline can be tweaked by editing a XML

configuration file. This provides a certain degree of flexibility but

changes in the pipeline cannot be performed at runtime, but need

a restart of the application. It also lacks a proper GUI.

BBTouch is another open-source multi-touch library implemented

with Cocoa and Objective C and therefore only available for

MacOS systems [1]. The BBTouch platform offers a compact GUI

for tweaking different parameters. It also offers a unique

calibration method in comparison with all other open source

tracking solutions but provides no means for editing the filter

pipeline as with Touchlib.

Touchè is another tracking library primarily designed for the

MacOS system [27]. In contrast to other trackers, Touchè comes

with a mature graphical user interface, which allows programmers

to change a lot of parameters of the different filters in the image

processing pipeline but operates also on a fixed filter pipeline.

Community Core Vision (CCV) is a popular open-source and

cross-platform solution for multi-touch tracking [5]. CCV

supports image processing on the GPU. Newest builds also

support multiple camera setups. As with most other solutions it

comes with a fixed image processing pipeline and doesn‘t take

advantage of multicore systems.

A newer project called movid (Modular Open Vision Interaction

Daemon) takes a different approach by providing the dynamic

creation of filter graphs using a node-based interface [21]. These

graphs can be created using a browser. It‘s also the only solution

which aims at combining touch and marker tracking as well as

supporting image processing using more than one thread. movid

is, at the time of this writing, not available as a binary as a first

official release is still under development.

ReacTIVision is another open-source computer vision library

used for multi-touch setups [14]. In contrast to the

aforementioned tools it was primarily designed for table-based

tangible user interface and is also able to track fiducial markers. It

offers a limited GUI and no mechanism to adapt the image

processing pipeline to nonstandard setups.

2.2 High-level interaction libraries
To develop applications which take advantage of the multi-touch

input generated by the aforementioned low-level input processing

tools several libraries and toolkits exist.

Commercial tabletops are usually shipped together with a high-

level multi-touch library. One of the first tabletop solutions was

the DiamondTouch [6], a non-optical table, which came with the

high-level SDK DiamondSpin [26].

The Microsoft Surface SDK is another high-level multi-touch

library, which works smoothly with the Microsoft Surface. The

combination with the Windows Presentation Foundation (WPF)

and XNA provides a rapid prototyping of games and installations.

The Microsoft Surface SDK is limited to the Surface hardware.

Squidy is an interaction library, which unifies various device

drivers, frameworks and tracking toolkits in one common library

and provides a visual design environment [15]. A corresponding

visual user interface hides the complexity of the technical

implementation by providing a simple visual data flow

programming interface.

PyMT [12], is a Python-based multi-touch environment, which

allows users to prototype faster multi-touch applications. By

providing a variety of multi-touch widgets, and easy to access

advanced features, programmers can quickly write tabletop

applications. Finally, there is also MT4J [22], which in contrast to

PyMT, is based on Java.

Using this classification into low-level and high-level libraries,

LightTracker falls into the first category improving on some of the

aforementioned shortcomings of other solutions.

3. LIGHTTRACKER
With LightTracker, users can dynamically create and manipulate

the image-processing pipeline at run-time (cf. Figure 1). The

toolkit is primarily designed for touch tracking, but the pipeline

can easily be extended for other image processing tasks, for

example marker tracking.

Figure 2: The four plugin sections of the LightTracker: The

image created by the source (A) is processed by the filter chain

(B), analyzed by the tracker (C), and the resulting blobs, after

conversion by the calibration, are forwarded to the application

by the sink (D).

Users are able to arrange the image processing pipeline by

choosing individual modules from a pool of plugins, including:

 At the beginning of the pipeline there is a single source

plugin (Figure 2 (A)). This plugin is responsible for

providing image data for the pipeline. Possible

implementations include simple camera sources, video

players or plugins which stich together multiple image-

sources into one combined image.
 The source plugin passes the source image to the first filter

plugin of the filter chain (Figure 2 (B)). These plugins

perform image processing and pass the resulting image to the

next filter of the chain. Examples include background

subtraction filters, threshold filters or more complex

functionality like marker tracking. The screenshot in Figure 2

(B) shows a pipeline with four different filters.

 The last filter in the chain passes the resulting image to a

tracker plugin (Figure 2 (C)). This plugin takes the image

and performs blob tracking. The result of the tracker plugin

is a list of tracked blobs.

 The tracker plugin passes this list to the calibration module

of the pipeline, which transforms the blob values from

camera coordinates into screen coordinates. The calibration

module is not visible in Figure 2 as it has its own UI and is

explained in detail in Section 3.2.

 After the calibration step, the blobs are forwarded to the sink

plugin (Figure 2 (D)). This plugin is the last in the chain and

responsible for encoding and sending the blob data to an

application. Possible implementations include a TUIO [13]

sink plugin encoding the touch data in the popular TUIO

protocol and sending the data to the client over UDP.

The resulting image processing pipelines can be saved using a

XML file format. By loading different pipeline setups, we can

quickly switch between differently specialized pipelines. This

allows us to define and manage different pipelines for touch-

tracking only as well as a combined marker and touch-tracking

pipelines for the same hardware setup.

3.1 Filter Chain
The filter chain is at the heart of every touch tracking solution.

This is where the image from the source is processed in a way that

good blob tracking results can be achieved. Consequently, this is

where the most user customization is required.

With the exception of movid [21], all existing open source touch

tracking solutions provide a fixed filter pipeline with a standard

set of filters which cannot be rearranged at runtime.

Customization is only achieved by tweaking parameters of the

individual filter steps. In contrast, LightTracker‘s filter chain

allows users to assemble a chain of image processing filters of

arbitrary length. Filters can be added, removed and re-ordered

dynamically at run-time. The result of each modification can be

observed immediately in the preview of each filter. Consequently,

we can prototype filter chain ideas more easily as well as offer a

lot more flexibility when building non-standard multi-touch

setups.

Figure 3: Users can dynamically add new filters by clicking

the ‘+’ button displayed at all possible locations in the filter

chain.

In comparison to the graph-based approach of movid, which

provides branching of the filter pipeline, the single filter chain

approach of LightTracker offers less flexibility. On the other hand

no image copying operations between filter steps are required.

To enable a more detailed view of the resulting image, single

plugins can be maximized, as well as minimized to free space for

other plugins, aiding with the fine tuning and debugging of the

filter chain.

By clicking one of the ‗+‘ buttons in between filters, a list of all

available filter plugins is displayed (cf. Figure 3). By selecting a

plugin from the list, it is inserted into the pipeline (cf. Figure 4).

Removing a filter from the chain is achieved by pressing the ‗x‘

labeled button located in the upper right corner of each filter.

Figure 4: Inserting a filter into the pipeline.

3.2 Calibration
LightTracker‘s calibration process is similar to that of other

tracking applications: In a multi-screen environment, users first

have to choose a screen to calibrate. On the chosen screen a

borderless full screen window is displayed showing a configurable

clipping rectangle. This rectangle defines the area in which

touches are ―accepted‖. Inside this clipping rectangle a

configurable amount of points is arranged. When starting the

calibration process the user has to touch these points on the screen

one after the other. This results in point pairs linking camera

coordinates (the touches in the camera image) with screen

coordinates (the screen coordinates of the points). By grouping

adjacent point pairs into quads we can calculate the perspective

transformation which links the quad in camera coordinates with

the quad in screen coordinates. Therefore, enabling us to translate

any point in camera coordinates inside a quad, into the

corresponding point in screen coordinates.

This transformation delivers ―correct‖ values only under the

assumption that the camera image does not suffer from nonlinear

distortions. Otherwise touch points which do not directly lie on

the calibration points will deviate from the expected position in

screen space. This problem can be observed when using an ultra-

wide angle camera lens such as a fisheye lens which suffers from

high amounts of barrel distortion. With other tracking solutions

the magnitude of this positional error can be reduced by choosing

a higher amount of calibration points. However this in turn makes

calibration a longer and more tedious process.

Figure 5: Linear (left) and spherical distribution (right) of

calibration points.

To improve on this, LightTracker offers different distribution

functions for the calibration points (Figure 5). By distributing the

points in a nonlinear fashion, more calibration points are provided

only in areas where a high amount of nonlinear distortion is

present. For fisheye lenses this is the case in the border regions of

the image. Through this it is possible to get better precision in

areas where needed (see Figure 6, left) while resulting in a shorter

overall calibration time. At the moment only a linear and a

spherical distribution function is implemented but additional

functions can be added easily.

Figure 6: Due to nonlinear distortions in the border regions a

spherical distribution of calibration points (left) yields better

results than a linear distribution (right) while using the same

amount of calibration points.

4. APPLICATION CASE: GAMING

COUCHTABLE
To demonstrate the performance of LightTracker, we implemented

a tabletop multi-touch setup based on DI tracking. The main goal

was to create an interactive couch table for playing games which

would also function well as a normal piece of furniture in an

ordinary living space under conditions such as changing ambient

lighting. Figure 7 illustrates a couple of design steps of the table.

(a)

(b)

(c)

(d)

Figure 7: Starting from first paper mockups of possible tables

(a) and the final design (b) a first full size prototype was built

(c). The last image (d) shows the final table.

The various design iterations will not be discussed in this paper.

Instead, we will focus on how details of the final setup influenced

the configuration of the image processing pipeline using

LightTracker.

4.1 Hardware
In comparison to other multi-touch tables, the most outstanding

feature of our couch table is its very low height in relation to the

size of the screen. The table is only about 15 inches high

measuring a screen diagonal of 46 inches. Adjacent to the screen,

and of the same height, there is a wooden sideboard, which can be

used as additional space for depositing objects. Under the

sideboard there is enough space for the PC and the projector. On

both sides of the table, beneath the screen, we added additional

storage compartments for magazines.

The limited space inside the table is housing a short-throw

projector (Hitachi CP-A100), the rendering PC, one high

resolution camera (Pointgrey Flea 2) with a fisheye lens (185°

FOV) as well as IR-LED strips for illumination.

Figure 8: A camera with a fisheye lens in the middle of the

table is used for tracking. To display the image a short-throw

projector is used. In the background one of the magazine

compartments can be seen constraining the space inside the

table.

Due to the low height of the table and the size of the screen we

had the choice of either using a single camera setup with a very

wide angle lens or to arrange two or more cameras inside the table

in such a way that each of them covers only a part of the screen.

Because of the space restrictions imposed by the two magazine

compartments we decided to use a single camera with a fisheye

lens (cf. Figure 8).

Based on this hardware setup we observed two problems which

cannot be solved easily with state-of-the-art multi-touch solutions:

 Distortion of the camera image due to fisheye lens.

 Uneven lighting especially in border regions due to

limited space within the table.

The first problem can be solved using the nonlinear distribution of

calibration points in LightTracker‘s calibration module (cf.

Section 3.2). The solution to the second problem as well as the

general setup of the filter chain is discussed in more detail in the

following section.

4.2 Filter Chain
As a starting point for our filter chain setup, we looked at existing

tracking solutions and their filter setups. The resulting image

processing pipeline for the table looked as follows:

 Background subtraction filter,

 ReacTIVision marker tracking filter,

 High-pass filter,

 Blur filter, and

 Threshold filter.

This filter chain worked reasonably well for the center part of the

screen. However in some regions blob tracking as well as marker

tracking did not produce usable results. Uneven lighting inside the

table as well as the vignetting effects of the camera lens resulted

in a brightness falloff in the image for border areas of the screen.

Consequently, blobs in that area could not be detected reliably.

Due to the special shape of the couch table an even light

distribution inside the table is practically impossible. Likewise the

vignetting effect of our fisheye lens can only be countered by

using more expensive hardware. That is why we decided to

approach this problem by adding a custom filter to the filter chain,

the so called ―Intensity Map‖ filter. It adjusts the brightness of the

images on a per-pixel basis. Hence areas with darker blobs are

getting lighted up to the same level as areas, which produce

lighter blobs.

The filter requires a calibration step in which the intensity for

each pixel in the camera image is determined when light is

reflected at that position. This is done by capturing a reference

image when the whole touch surface is covered with a material,

which has comparable reflective properties as fingers or other

objects later used for interacting with the table. In our case, we

use a piece of cotton cloth. The calibration process and the

resulting reference image for our setup can be seen in Figure 9.

Figure 9: The calibration process for the intensity map filter

(left) and the resulting reference image illustrating the uneven

lighting situation (right).

For every pixel in this reference image the filter calculates the

factor with which it would have to multiply the value to get a fully

lit pixel and stores this factor inside a texture. By multiplying the

incoming images with this texture the filter selectively brightens

up darker areas in these images (cf. Figure 10).

This can only be used for smaller variations in image brightness.

When used for very dark areas the filter leads to high

multiplication factors, which also results in a strong amplification

of artifacts like image noise. Hence the filter cannot replace even

lighting altogether but helps to achieve a more even brightness

distribution in the image and therefore leads to a more stable blob

tracking.

Figure 10: By putting a white sheet of paper on the table we

can visualize the effect of the intensity map: On the left we see

the unprocessed image showing uneven lighting (vertical

stripes) as well as vignetting effects (brightness falloff at the

bottom). The right image shows the processed image showing a

more even brightness distribution.

The final image processing pipeline, for combined touch and

marker tracking, including the ―Intensity Map‖ filter is depicted in

Figure 11. Each step offers the possibility to tweak certain

parameters.

Figure 11: The final filter chain used for the table setup.

5. IMPLEMENTATION
LightTracker is implemented using C++, Qt [25] and OpenCV

[23]. To provide more flexibility, every part of the pipeline –

except for the calibration – is implemented using a plugin

mechanism.

5.1 Plugin System
LightTracker already provides a set of common plugins and new

ones can easily be created via an API. Each of the plugin types

(source, filter, tracker, sink) has a base class with a lightweight

interface from which new plugins can be derived. By compiling

the derived plugin as a shared library and placing the library in a

subdirectory, it is automatically loaded by LightTracker and ready

to be inserted into the pipeline.

To facilitate the creation of custom plugins, our API already

provides a lot of common functionality in the base classes of the

plugin types. A minimal user interface providing a preview image

of the plugin result, buttons to maximize, minimize and remove

the plugin, as well as a checkbox to enable and disable the plugin,

is automatically generated as part of every plugin. Developers can

easily extend this user interface with custom controls for the

specific functions of their plugin (cf. Figure 12).

Figure 12: The graphical user interface of a simple filter

plugin. The encircled controls have been added by the

developer in addition to the standard controls from the base

class.

Another feature inherited from the base classes is the property

system. When creating a new plugin, users can save member

variables in a property table. Consequently, these variables get

serialized automatically once the whole pipeline is saved by the

user as well as de-serialized when loaded.

5.2 Threading
Most open-source multi-touch trackers do not utilize the

multicore architecture of modern computers by implementing the

image processing pipeline in a single thread. The LightTracker-

toolkit on the other hand was designed with a multi-threading

architecture; thus enabling better performance on multicore

systems.

Threading in LightTracker is implemented on a ―per-image‖

basis. Rather than using a single thread for each plugin as for

example implemented in movid [21], a single thread is

responsible for executing the whole pipeline on a single frame.

This minimizes the synchronization overhead between plugins.

One limitation of this frame-based threading approach is that

plugins cannot easily access results from previous frames. For

example, it is not possible for frame(t) to access the result of

frame(t-1) if processing of this frame is still executing in a

different thread. This limitation could be overcome by

implementing a mechanism which would synchronize between

different threads but this would have a negative impact on

performance.

During our tests, however, we found that this limitation was an

acceptable drawback for the performance gain and should the

need for such a mechanism arise, this could easily be integrated

into the current system at a later point in time.

Wait for new

Image from

Source

All Threads in

Pool busy?

Discard Image

Assign Image

and Pipeline to

Worker Thread

Execute

Tracker Plugin

on Image

Apply all Filter

Plugins in

Pipeline to

Image

Perform

Calibration on

Blobs

Execute

Sink Plugin on

Blobs

Yes

No

Thread Pool

Start Pipeline

Worker

End Pipeline

Worker

Start Source

Worker

Thread 1
2

n

Figure 13: Multi-threading control flow in LightTracking:

The SourceWorker thread is assigning created images to a

PipelineWorker thread from the pool.

The multi-threading architecture of LightTracking Toolkit is

implemented using two types of worker threads: SourceWorker

and PipelineWorker (see Figure 13).

A single SourceWorker operates on the source plugin by checking

in a continuous loop if a new image is ready to be processed. If an

image is ready, the image and the current pipeline are assigned to

a free PipelineWorker from the thread pool. Multiple

PipelineWorkers process the images, applying the filter plugins,

executing the tracker plugin, performing the calibration, and

executing the sink plugin.

The number of PipelineWorker threads in the thread pool is

initially calculated based of the real and logical number of

processor cores in the system. This number can be adjusted in the

application settings and represents the maximum number of

images, which can be processed simultaneously. If the

SourceWorker thread has a new image but all threads in the

PipelineWorker pool are busy the image gets discarded to prevent

too much latency between creation and processing of an image.

5.2.1 Evaluation
To evaluate a possible performance gain of our multi-threaded

architecture on systems with more than one processor core, we

implemented a traditional single threaded image processing path

alongside the multi-threaded one. Using these two paths, we ran

some initial tests measuring the frame rate. We used a single

system equipped with a quad core processor (Intel Core 2 Quad

Q9400 @ 2.66 GHz) and deactivated three and two of the cores to

simulate a single and dual core system respectively.

We used a CPU intensive filter chain for our measurements

determining the possible gain under heavy load. We measured the

amount of frames processed in one minute and ran this test 5

times for each configuration. The average results are depicted in

Figure 14.

Figure 14: Results from our initial performance test.

Using the single-threaded approach frame rate is nearly identical

for all processor configurations. The small performance advantage

of the multicore configurations can be attributed to the fact that

the GUI thread of the application as well as other processes

running in the background can be executed on a separate core.

Using two and four threads the performance on multicore

configurations increases significantly. On the quad core

configuration about 3.3 times more frames could be processed

when using 4 threads (1002 fpm) in comparison to the single

threaded approach (307 fpm).

6. CONCLUSION AND FUTURE WORK
In this paper, we presented LightTracker – a highly modular open

source touch tracking toolkit. We listed the shortcomings of other

open source touch tracking libraries we have discovered while

building multi-touch setups and described how LightTracker tries

to avoid these. The highly modular filter chain at the heart of our

tracking solution and our improvements to the calibration process

of multi-touch setups using camera lenses with non-linear

characteristics have been presented. As an example of how to

successfully adapt LightTracker to non-standard hardware setups,

we demonstrated our gaming couch table.

The implementation part introduced the design of the plugin

system and illustrated the creation of custom plugins as well as

showing the multi-threaded approach of LightTracker and the

performance gains which can be achieved with this architecture

on multicore systems.

At the moment additional LightTracker plugins are still actively

developed. Work on a multi-camera source plugin, stitching

together the images of multiple cameras, has been started.

LightTracker is being released for the Microsoft Windows

platform under the GNU General Public License [10]. As all of

the libraries used are cross-platform, future releases for other

platforms should be possible.

7. REFERENCES
[1] Bederson, B. B., Grosjean, J., and Meyer, J. 2004. Toolkit

Design for Interactive Structured Graphics. IEEE Trans.

Softw. Eng. 30, 8 (Aug. 2004), 535-546.

[2] Bakker, S., Vorstenbosch, D., van den Hoven, E.,

Hollemans, G., and Bergman, T. 2007. Weathergods:

tangible interaction in a digital tabletop game. In

Proceedings of the 1st international Conference on Tangible

and Embedded interaction (Baton Rouge, Louisiana,

February 15 - 17, 2007). TEI '07. ACM, New York, NY,

151-152.

[3] Barakonyi, I., Weilguny, M., Psik, T., and Schmalstieg, D.

2005. MonkeyBridge: autonomous agents in augmented

reality games. In Proceedings of the 2005 ACM SIGCHI

international Conference on Advances in Computer

Entertainment Technology (Valencia, Spain, June 15 - 17,

2005). ACE '05, vol. 265. ACM, New York, NY, 172-175.

[4] BBTouch. Available at

http://benbritten.com/software/bbtouch-quick-start/.

[5] Community Core Vision (CCV). Available at

http://ccv.nuigroup.com/.

[6] Dietz, P. and Leigh, D. 2001. DiamondTouch: a multi-user

touch technology. In Proceedings of the 14th Annual ACM

Symposium on User interface Software and Technology

(Orlando, Florida, November 11 - 14, 2001). UIST '01.

ACM, New York, NY, 219-226.

[7] Echtler, F. and Klinker, G. 2008. A multi-touch software

architecture. In Proceedings of the 5th Nordic Conference on

Human-Computer interaction: Building Bridges (Lund,

Sweden, October 20 - 22, 2008). NordiCHI '08, vol. 358.

ACM, New York, NY, 463-466.

[8] Esenther, A., Wittenburg K., Multi-user multi-touch games

on DiamondTouch with the DTFlash toolkit Intelligent

Technologies for Interactive Entertainment. Springer. 2005.

pp 315-319

[9] Geller, T. Interactive Tabletop Exhibits in Museums and

Galleries, IEEE Computer Graphics and Applications 2006

(Vol. 26, No. 5), pp. 6-11.

[10] GNU General Public License. Available at

http://www.gnu.org/licenses/gpl.html

[11] Han, J. Y. 2005. Low-cost multi-touch sensing through

frustrated total internal reflection. In Proceedings of the 18th

Annual ACM Symposium on User interface Software and

Technology (Seattle, WA, USA, October 23 - 26, 2005).

UIST '05. ACM, New York, NY, 115-118.

[12] Hansen, T. E., Hourcade, J. P., Virbel, M., Patali, S., and

Serra, T. 2009. PyMT: a post-WIMP multi-touch user

interface toolkit. In Proceedings of the ACM international

Conference on interactive Tabletops and Surfaces (Banff,

Alberta, Canada, November 23 - 25, 2009). ITS '09. ACM,

New York, NY, 17-24.

[13] Kaltenbrunner, M. 2009. reacTIVision and TUIO: a tangible

tabletop toolkit. In Proceedings of the ACM international

Conference on interactive Tabletops and Surfaces (Banff,

Alberta, Canada, November 23 - 25, 2009). ITS '09. ACM,

New York, NY, 9-16.

[14] Kaltenbrunner, M. and Bencina, R. 2007. reacTIVision: a

computer-vision framework for table-based tangible

interaction. In Proceedings of the 1st international

Conference on Tangible and Embedded interaction (Baton

Rouge, Louisiana, February 15 - 17, 2007). TEI '07. ACM,

New York, NY, 69-74.

[15] König, W. A., Rädle, R., and Reiterer, H. 2009. Squidy: a

zoomable design environment for natural user interfaces. In

Proceedings of the 27th international Conference Extended

Abstracts on Human Factors in Computing Systems (Boston,

MA, USA, April 04 - 09, 2009). CHI '09. ACM, New York,

NY, 4561-4566.

[16] Leitner, J., Haller, M., Yun, K., Woo, W., Sugimoto, M., and

Inami, M. 2008. IncreTable, a mixed reality tabletop game

experience. In Proceedings of the 2008 international

Conference on Advances in Computer Entertainment

Technology (Yokohama, Japan, December 03 - 05, 2008).

ACE '08, vol. 352. ACM, New York, NY, 9-16.

[17] Leitner, J., Köffel, C., and Haller, M. 2009. Bridging the gap

between real and virtual objects for tabletop games. Int. J.

Virtual Reality 7, 4, 33-40.

[18] Magerkurth, C., Memisoglu, M., Engelke, T., and Streitz, N.

2004. Towards the next generation of tabletop gaming

experiences. In Proceedings of Graphics interface 2004

(London, Ontario, Canada, May 17 - 19, 2004). ACM

International Conference Proceeding Series, vol. 62.

Canadian Human-Computer Communications Society,

School of Computer Science, University of Waterloo,

Waterloo, Ontario, 73-80.

[19] Matsushita, N. and Rekimoto, J. 1997. HoloWall: designing

a finger, hand, body, and object sensitive wall. In

Proceedings of the 10th Annual ACM Symposium on User

interface Software and Technology (Banff, Alberta, Canada,

October 14 - 17, 1997). UIST '97. ACM, New York, NY,

209-210.

[20] Microsoft Surface. Available at

http://www.microsoft.com/surface.

[21] Movid. Available at http://movid.org/.

[22] Multi-touch for Java. Available at

http://www.mt4j.org/mediawiki/index.php/Main_Page.

[23] OpenCV. Available at

http://sourceforge.net/projects/opencvlibrary/

[24] Peltonen, P., et al. ―It‘s Mine, Don‘t Touch!‖: Interac- tions

at a Large Multi-Touch Display in a City Centre. Proc. of

CHI 2008, ACM. pp. 1285-1294.

[25] Qt, Cross-platform application and UI framework. Available

at http://qt.nokia.com/

[26] Shen, C., Vernier, F. D., Forlines, C., and Ringel, M. 2004.

DiamondSpin: an extensible toolkit for around-the-table

interaction. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (Vienna, Austria,

April 24 - 29, 2004). CHI '04. ACM, New York, NY, 167-

174.

[27] Touchè. Available at http://gkaindl.com/software/touché.

[28] Touchlib. Available at http://www.nuigroup.com/touchlib/.

http://benbritten.com/software/bbtouch-quick-start/
http://ccv.nuigroup.com/
http://www.gnu.org/licenses/gpl.html
http://www.microsoft.com/surface
http://movid.org/
http://www.mt4j.org/mediawiki/index.php/Main_Page
http://sourceforge.net/projects/opencvlibrary/
http://gkaindl.com/software/touch%C3%A9
http://www.nuigroup.com/touchlib/

