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Figure 1: Interactive spaces based on post-WIMP DUIs. (a) NiCE Meeting Room [5], (b) DeskPiles [2] and (c) Facet-Streams [10] 

ABSTRACT 

Creating novel user interfaces that are “natural” and 

distributed is challenging for designers and developers. 

“Natural” interaction techniques are barely standardized 

and in combination with distributed UIs additional technical 

difficulties arise. In this paper we present the lessons we 

have learned in developing several natural and distributed 

user interfaces and propose design patterns to support 

development of such applications. 
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INTRODUCTION 

In the recent years, the ever-increasing miniaturization of 

interactive products with great computational power and 

network connectivity has resulted in a proliferation of 

computing into almost every facet of our physical and 

social world. This process has turned many aspects of Mark 

Weiser’s vision of ubiquitous computing into a part of our 

daily life. However, as HCI researchers, we consider two 

essential challenges of ubicomp as still unmet: creating 

novel user interfaces that are natural and distributed.  

Our understanding of Distributed User Interfaces (DUI) is 

based on Melchior et al. [11]: a DUI is a UI with the ability 

to distribute parts or whole of its components across 

multiple monitors, devices, platforms, displays and/or users. 

For our research, this ability is essential to realize 

interactive spaces [16] in which multiple interactive 

surfaces and devices act as one distributed UI for co-located 

collaboration (Figure 1). In these spaces we try to achieve a 

“natural” interaction, i.e. the UI is perceived as something 

unobtrusive or even invisible that does not require the 

users’ continuous attention or a great deal of cognitive 

resources. A well-proven approach to achieve this are 

visual model-world interfaces for “direct manipulation”, in 

which a tight coupling of input and output languages 

narrows the gulfs of execution and evaluation [7]. While 

direct manipulation originates from 1980s desktop 

computing, its principles are also the foundation of novel 

post-WIMP (post-“Windows Icons Menu Pointing”) or 

reality-based UIs [8]: Their interaction styles (e.g. tangible, 

multi-touch or paper-based UIs) “draw strength by building 

on users’ pre-existing knowledge of the everyday, non-

digital world to a much greater extent than before.” Users 

can apply the full breadth of their natural, non-digital skills, 

e.g. the bimanual manipulation of objects, handwriting or 

their awareness of objects or persons in their physical and 

social environment. 

Our two research groups have designed and implemented a 

great variety of such post-WIMP distributed UIs for co-

located collaboration in augmented meeting rooms [5], on 

tabletops for scientific discussion [2] or for collaborative 

product search [10] (Figure 1). Based on these experiences, 

we have to conclude that the combination of natural and 

distributed UIs poses a particular hard challenge to UI 

designers and developers [9]. As discussed by Shaer and 

Jacob, the typical challenges that creators of natural UIs 

face are the lack of appropriate interaction abstractions, the 

shortcomings of current user interface software tools to 

address continuous and parallel interactions, as well as the 

excessive effort required to integrate novel input and output 

technologies [14]. The distribution of natural interactions 

across device and display boundaries adds greatly to this 

complexity.  
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In the following, we summarize our “lessons learned” to 

share them with DUI researchers and practitioners by 

extracting two design patterns (DP) and an anti-pattern 

(AP). These three patterns address both sides of UI 

creation: interaction design patterns [1] and software design 

patterns. All were tested extensively during our projects. 

While the first two patterns have become a part of our open 

source software framework ZOIL that facilitates DUI 

implementation [17], the anti-pattern was implemented, 

tested and discarded as ineffective. We conclude with a 

brief summary of our findings and formulate research 

questions for future work. 

DESIGN PATTERNS FOR POST-WIMP DUIS 

To understand the origin of our patterns, it is important to 

notice the commonalities of the projects from which they 

are derived: All of them are aimed at creating interactive 

spaces for co-located collaboration of multiple users. As 

shared surfaces we either use large Anoto-pen enabled 

front-projected surfaces [5] or smaller vision-based multi-

touch enabled tabletops (e.g. Microsoft Surface) [9]. 

Personal and mobile surfaces are realized using sheets of 

Anoto paper & laptops [5] or tablet PCs [2]. To achieve a 

natural post-WIMP interaction, the dominant input 

modalities throughout the projects are multi-touch and/or 

Anoto pens. Furthermore the design follows a fundamental 

principle of natural UIs: “the content is the interface” [6]. 

This means, that the amount of administrative UI controls 

known from WIMP (e.g. menus, window bars, tool bars) is 

minimized so that the content objects themselves become 

the first-class citizen of the UI. This natural provision of 

content for direct manipulation also has implications on the 

flexibility of interaction. By abandoning traditional page- or 

dialog-oriented sequences of interaction (e.g. typical Web 

applications), users can act directly and flexibly on the 

objects of the task domain. Apart from multi-touch and pen-

based manipulations and gestures, tangible props such as 

physical tool palettes [5] or glass tokens for query 

formulation support users in their tasks [10]. 

DP1: Real-Time Distribution of a Zoomable Workspace 

A prerequisite for any kind of collaboration is a shared 

workspace accessible to all users. As a first interaction 

design pattern, we therefore suggest the use of a shared 

visual workspace that uses a 2D virtual plane containing all 

necessary functionality and content of the application 

domain as visual objects for direct manipulation. All user 

changes to the location, orientation, size, annotation or 

nature of these objects are immediately executed and 

visualized in real-time. The workspace serves as a model-

world representation of the application domain that shares 

an essential property with the real world: actions on objects 

lead to immediate feedback and persistent results. Thus the 

workspace resembles a physical whiteboard for natural, co-

located and synchronous collaboration (e.g. in [5]). We 

extend this pattern further with a Zoomable User Interface 

(ZUI). ZUIs largely increase the amount of accessible 

objects because the workspace is not limited to the visible 

screen size and becomes virtually infinite in size and 

resolution. Nevertheless ZUIs still maintain a natural feel 

during navigation as they tap into our natural spatial and 

geographic ways of thinking [12]. Thereby “semantic 

zooming” is employed and geometric growth in display 

space is also used to render more and semantically different 

content and functionality. Ideally ZUIs can thereby “replace 

the browser, the desktop metaphor, and the traditional 

operating system. Applications per se disappear” [13]. Most 

importantly, when put on a central server to make it 

accessible from different clients, such a shared ZUI enables 

many scenarios of real-time distribution. Every ZUI client 

can access the local or remote ZUI server to render an 

arbitrary section of the shared ZUI at an arbitrary zoom 

level. Thus each client acts as a kind of camera into the 

shared workspace that users can control using zooming and 

panning operations. This enables many distribution modes: 

(1) By running several instances of a ZUI client on one PC, 

different views of the real-time synchronized workspace 

can be displayed simultaneously, e.g. for distributing the 

workspace to multiple windows or multiple monitors to 

create an overview and detail solution. (2) When using 

multiple devices each device can run one or several clients 

that connect to the central server, so that different devices 

can access and visualize the same shared workspace. Thus 

the physical boundaries of devices can be overcome to 

achieve a cross-device distribution of the workspace. This 

can be used to provide multiple access points, e.g. several 

co-located PCs with large touch-enabled vertical or 

horizontal displays, at a local or even a remote site. 

Depending on the use case, a device’s view onto the shared 

workspace can be either tightly coupled with any other 

device or used completely independent from others. For 

example a handheld device then always acts as a zoomed 

out overview of the detail view on a tabletop. (3) The same 

mechanisms enable the distribution of the workspace to 

multiple users: By introducing personal devices (e.g. smart 

phones, laptops or tablet PCs) that run a ZUI client, a 

distribution to multiple users becomes possible (e.g. to 

several users around a tabletop each carrying a tablet PC for 

annotation [2]). 

We have made extensive use of this interaction pattern in 

[2] and [10]. We share more details about our software 

design and implementation choices for this interaction 

pattern in the following. 

DP2: Distributed ViewModels 

The Distributed ViewModel simplifies the development of 

new interaction techniques for DUIs. It provides a 

transparent mechanism to synchronize view-dependent 

information among all connected instances of a DUI. 

Content and interaction are often much closer to each other 

on Post-WIMP UIs than it used to be in traditional user 

interfaces. This motivates developers to bring those two 

properties closer together in the software design. Content 

and basic view information, such as position and size of a 



view, can be easily modeled with standard design patterns, 

but the interaction itself cannot. Interaction with post-

WIMP user interfaces is not as standardized as in WIMP 

interfaces, therefore UI developers still need a lot more 

freedom to design and test new interaction techniques. But 

in contrast to non-distributed UIs, designing interaction for 

DUIs lacks many tools and design patterns and still requires 

much know-how about the technical background. For 

example, a DUI developer needs to know how to distribute 

the UI onto other machines. But network synchronization 

with all its issues is a very complex topic and a UI 

developer should not need to worry much about it.  

The concept of a distributed view model tries to address 

those problems by providing a network-synchronized model 

of a view to ease development of a shared UI. It provides an 

additional abstraction layer that contains the content of a 

view as well as view-dependent properties. The distributed 

view model is based on the Model-View-View-Model 

(MVVM) design pattern [15]. In the MVVM pattern the 

data model of an application is separated from its view, 

similar to the Model-View-Controller (MVC) pattern. In 

contrast to MVC, MVVM provides an additional 

abstraction layer, the so-called “ViewModel” which is an 

abstract description of the view. The “ViewModel” can also 

be seen as a "Model of the View" containing only view-

related information and logic. This allows an UI designer to 

mainly focus on UI design but still provides a clean 

interface to the non-UI parts of the application. The 

Distributed ViewModel pattern, as depicted in Figure 2, 

facilitates this clean interface to provide a transparent 

distribution of view-related properties which are defined in 

the ViewModel. The Distributed ViewModel is much like 

the ViewModel as it contains the same information, but in 

contrast its contents and structure are already prepared for 

network synchronization. All information stored in a 

Distributed ViewModel is automatically serialized and 

synchronized with all other connected instances of the 

application or UI. In practice, the ViewModel can often be 

completely replaced by a Distributed ViewModel, if data 

types used in the view are compatible with network 

synchronization. 

In difference to the original MVVM design pattern, the 

Distributed ViewModel pattern is designed for transparent 

synchronization of ViewModels among all connected 

instances. Thereby the Distributed ViewModels are handled 

as “network shared objects” which update all other 

networked instances of the same object if a property 

changes. The update mechanism makes use of a change 

notification system within the view and ViewModel. If a 

property of a view and consequently of a ViewModel is 

modified, the ViewModel fires an event allowing other 

objects, such as the Distributed ViewModel, to be notified. 

Consequently, distributed instances of the Distributed 

ViewModel can be updated accordingly. It is important to 

note, that the distributed update of these objects needs to 

take care of concurrency issues that might arise if two 

instances of the same objects are changed concurrently.  

 

Figure 2: Concept of Distributed ViewModels 

The update mechanism of the Distributed ViewModel can 

be developed in a nearly transparent way. In our DUI 

applications we provided a base class which hid the 

network synchronization from the UI development. In our 

implementation we have used an object database that 

provides a “transparent persistency” mechanism as back-

end [17]. Hence a UI developer never came in direct touch 

with networking issues.  

AP1: Input Forwarding (Anti-Pattern)  

Not every software design that has been tested was 

successful. Forwarding of input events from input devices 

such as the mouse, stylus or keyboard failed. The 

motivation behind input forwarding is to distribute 

interaction techniques by simply forwarding the raw input 

received from the input devices to all other instances of the 

DUI. For example a touch input event on display A is 

forwarded onto display B and is processed by both UI 

instances in the same way. This design is based on the idea 

that input from a remote UI instance is handled in the same 

way as local input. Therefore, new interaction techniques 

on a DUI would be very simple to implement, because the 

UI developer does not need to care about network 

synchronization problems at all. The underlying assumption 

behind this design is that the CPU is a deterministic and 

standardized system. Hence, the same input always results 

in the same output. This would also mean that the 

underlying visualization of the controls does not need to be 

distributed, because the operations on those would result in 

the same result on every instance.  

This pattern relies on a server-client architecture. All input 

events are sent to a server on which they are synchronized 

and ordered. This solves many concurrency problems 

because every instance gets the same events in the same 

order. Additionally, since the resolution of the UI may vary 

on different devices, all input data containing position 

information (e.g.: mouse-pointer coordinates) need to be 

normalized before distribution. Accordingly the receiving 

instance needs to map those normalized input data in its 

own coordinate space. The UI controls are simply scaled on 



such systems, therefore input on a certain control on 

display A would be also on the same control on display B, 

even when the resolution is different. 

Although this design has been successfully used on single-

display, multi-user applications [4] this design failed for 

DUIs. The state of the UI on distributed instances of the 

system did diverge after a short time. This was caused by 

three problems that may occur in such a system: (1) Input 

coordinates have been normalized by using floating-point 

values. Since floating-point numbers are imprecise, results 

of de-normalization on DUIS using displays with different 

resolutions always contained a small rounding error. This 

small rounding error can be enough that a button is clicked 

on one instance and on another it is not. (2) Even when 

every instance of the DUI used the same resolution, 

interactions based on relative motion (e.g.: translating a UI 

element beneath a moving touch point relative to its last 

position) caused divergence. The GUI system used for 

rendering also used floating-point numbers to position UI 

elements. In contrast to our assumption floating-point 

calculations do not always have the same result on different 

computers [3]. (3) This design only works if the UI is 

exactly the same all the time. Even small differences in the 

layout may result in divergence of the instances. 

Therefore, we suggest that input forwarding should only be 

used if no floating-point values are involved and the layout 

and resolution of the UI is always exactly the same. 

CONCLUSION 

In this paper we have summarized our experiences or 

“lessons learned” from developing several “natural” and 

distributed UIs. The applications we have developed are all 

based on either a shared workspace or shared view; 

therefore our results may be limited to those types of DUIs. 

Still we believe that some aspects of our results are 

generalizable and also relevant for other types of DUIs.  

In the combination of both, relatively new, fields of UIs a 

set of new problems arise. Our software and interaction 

design patterns are the results of our first attempts to solve 

those problems. However, not all of our attempts were 

successful. At this early stage of post-WIMP DUI research 

we therefore think that it is important to also report about 

these failed approaches, so that other developers and 

researchers can avoid making the same mistakes.  

In the light of the novelty and complexity of the field, 

several new questions for future research are raised: 

(1) The Distributed ViewModel pattern still needs a 

developer but today UIs are usually created by designers 

using UI design tools. Do we need new design tools for 

DUIs? (2) Some aspects of a user interfaces are command-

based, for example undo/redo. Such command-based 

interactions are not handled in our proposed designs. (3) In 

conclusion we believe it is not enough to research only 

design patterns and theoretical models, but also develop 

real-worlds application on DUI concepts. In our opinion, 

only by developing, testing and deploying such applications 

to real-world users we will be able to fully understand the 

possibilities and constraints of DUIs.  
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