
Lessons Learned from the Design and Implementation of
Distributed Post-WIMP User Interfaces

Thomas Seifried
1
, Hans-Christian Jetter

2
, Michael Haller

1
, Harald Reiterer

2

1
Upper Austria University of Applied Sciences

Media Interaction Lab

{thomas.seifried, haller}@fh-hagenberg.at

2
University of Konstanz

Human-Computer Interaction Group

{jetter, reiterer}@inf.uni-konstanz.de

Figure 1: Interactive spaces based on post-WIMP DUIs. (a) NiCE Meeting Room [5], (b) DeskPiles [2] and (c) Facet-Streams [10]

ABSTRACT

Creating novel user interfaces that are “natural” and

distributed is challenging for designers and developers.

“Natural” interaction techniques are barely standardized

and in combination with distributed UIs additional technical

difficulties arise. In this paper we present the lessons we

have learned in developing several natural and distributed

user interfaces and propose design patterns to support

development of such applications.

Author Keywords

Post-WIMP, natural user interfaces, distributed user

interfaces, zoomable user interfaces, design patterns.

ACM Classification Keywords

H5.2. [Information Interfaces and Presentation]: User

Interfaces

INTRODUCTION

In the recent years, the ever-increasing miniaturization of

interactive products with great computational power and

network connectivity has resulted in a proliferation of

computing into almost every facet of our physical and

social world. This process has turned many aspects of Mark

Weiser’s vision of ubiquitous computing into a part of our

daily life. However, as HCI researchers, we consider two

essential challenges of ubicomp as still unmet: creating

novel user interfaces that are natural and distributed.

Our understanding of Distributed User Interfaces (DUI) is

based on Melchior et al. [11]: a DUI is a UI with the ability

to distribute parts or whole of its components across

multiple monitors, devices, platforms, displays and/or users.

For our research, this ability is essential to realize

interactive spaces [16] in which multiple interactive

surfaces and devices act as one distributed UI for co-located

collaboration (Figure 1). In these spaces we try to achieve a

“natural” interaction, i.e. the UI is perceived as something

unobtrusive or even invisible that does not require the

users’ continuous attention or a great deal of cognitive

resources. A well-proven approach to achieve this are

visual model-world interfaces for “direct manipulation”, in

which a tight coupling of input and output languages

narrows the gulfs of execution and evaluation [7]. While

direct manipulation originates from 1980s desktop

computing, its principles are also the foundation of novel

post-WIMP (post-“Windows Icons Menu Pointing”) or

reality-based UIs [8]: Their interaction styles (e.g. tangible,

multi-touch or paper-based UIs) “draw strength by building

on users’ pre-existing knowledge of the everyday, non-

digital world to a much greater extent than before.” Users

can apply the full breadth of their natural, non-digital skills,

e.g. the bimanual manipulation of objects, handwriting or

their awareness of objects or persons in their physical and

social environment.

Our two research groups have designed and implemented a

great variety of such post-WIMP distributed UIs for co-

located collaboration in augmented meeting rooms [5], on

tabletops for scientific discussion [2] or for collaborative

product search [10] (Figure 1). Based on these experiences,

we have to conclude that the combination of natural and

distributed UIs poses a particular hard challenge to UI

designers and developers [9]. As discussed by Shaer and

Jacob, the typical challenges that creators of natural UIs

face are the lack of appropriate interaction abstractions, the

shortcomings of current user interface software tools to

address continuous and parallel interactions, as well as the

excessive effort required to integrate novel input and output

technologies [14]. The distribution of natural interactions

across device and display boundaries adds greatly to this

complexity.

a b c

In the following, we summarize our “lessons learned” to

share them with DUI researchers and practitioners by

extracting two design patterns (DP) and an anti-pattern

(AP). These three patterns address both sides of UI

creation: interaction design patterns [1] and software design

patterns. All were tested extensively during our projects.

While the first two patterns have become a part of our open

source software framework ZOIL that facilitates DUI

implementation [17], the anti-pattern was implemented,

tested and discarded as ineffective. We conclude with a

brief summary of our findings and formulate research

questions for future work.

DESIGN PATTERNS FOR POST-WIMP DUIS

To understand the origin of our patterns, it is important to

notice the commonalities of the projects from which they

are derived: All of them are aimed at creating interactive

spaces for co-located collaboration of multiple users. As

shared surfaces we either use large Anoto-pen enabled

front-projected surfaces [5] or smaller vision-based multi-

touch enabled tabletops (e.g. Microsoft Surface) [9].

Personal and mobile surfaces are realized using sheets of

Anoto paper & laptops [5] or tablet PCs [2]. To achieve a

natural post-WIMP interaction, the dominant input

modalities throughout the projects are multi-touch and/or

Anoto pens. Furthermore the design follows a fundamental

principle of natural UIs: “the content is the interface” [6].

This means, that the amount of administrative UI controls

known from WIMP (e.g. menus, window bars, tool bars) is

minimized so that the content objects themselves become

the first-class citizen of the UI. This natural provision of

content for direct manipulation also has implications on the

flexibility of interaction. By abandoning traditional page- or

dialog-oriented sequences of interaction (e.g. typical Web

applications), users can act directly and flexibly on the

objects of the task domain. Apart from multi-touch and pen-

based manipulations and gestures, tangible props such as

physical tool palettes [5] or glass tokens for query

formulation support users in their tasks [10].

DP1: Real-Time Distribution of a Zoomable Workspace

A prerequisite for any kind of collaboration is a shared

workspace accessible to all users. As a first interaction

design pattern, we therefore suggest the use of a shared

visual workspace that uses a 2D virtual plane containing all

necessary functionality and content of the application

domain as visual objects for direct manipulation. All user

changes to the location, orientation, size, annotation or

nature of these objects are immediately executed and

visualized in real-time. The workspace serves as a model-

world representation of the application domain that shares

an essential property with the real world: actions on objects

lead to immediate feedback and persistent results. Thus the

workspace resembles a physical whiteboard for natural, co-

located and synchronous collaboration (e.g. in [5]). We

extend this pattern further with a Zoomable User Interface

(ZUI). ZUIs largely increase the amount of accessible

objects because the workspace is not limited to the visible

screen size and becomes virtually infinite in size and

resolution. Nevertheless ZUIs still maintain a natural feel

during navigation as they tap into our natural spatial and

geographic ways of thinking [12]. Thereby “semantic

zooming” is employed and geometric growth in display

space is also used to render more and semantically different

content and functionality. Ideally ZUIs can thereby “replace

the browser, the desktop metaphor, and the traditional

operating system. Applications per se disappear” [13]. Most

importantly, when put on a central server to make it

accessible from different clients, such a shared ZUI enables

many scenarios of real-time distribution. Every ZUI client

can access the local or remote ZUI server to render an

arbitrary section of the shared ZUI at an arbitrary zoom

level. Thus each client acts as a kind of camera into the

shared workspace that users can control using zooming and

panning operations. This enables many distribution modes:

(1) By running several instances of a ZUI client on one PC,

different views of the real-time synchronized workspace

can be displayed simultaneously, e.g. for distributing the

workspace to multiple windows or multiple monitors to

create an overview and detail solution. (2) When using

multiple devices each device can run one or several clients

that connect to the central server, so that different devices

can access and visualize the same shared workspace. Thus

the physical boundaries of devices can be overcome to

achieve a cross-device distribution of the workspace. This

can be used to provide multiple access points, e.g. several

co-located PCs with large touch-enabled vertical or

horizontal displays, at a local or even a remote site.

Depending on the use case, a device’s view onto the shared

workspace can be either tightly coupled with any other

device or used completely independent from others. For

example a handheld device then always acts as a zoomed

out overview of the detail view on a tabletop. (3) The same

mechanisms enable the distribution of the workspace to

multiple users: By introducing personal devices (e.g. smart

phones, laptops or tablet PCs) that run a ZUI client, a

distribution to multiple users becomes possible (e.g. to

several users around a tabletop each carrying a tablet PC for

annotation [2]).

We have made extensive use of this interaction pattern in

[2] and [10]. We share more details about our software

design and implementation choices for this interaction

pattern in the following.

DP2: Distributed ViewModels

The Distributed ViewModel simplifies the development of

new interaction techniques for DUIs. It provides a

transparent mechanism to synchronize view-dependent

information among all connected instances of a DUI.

Content and interaction are often much closer to each other

on Post-WIMP UIs than it used to be in traditional user

interfaces. This motivates developers to bring those two

properties closer together in the software design. Content

and basic view information, such as position and size of a

view, can be easily modeled with standard design patterns,

but the interaction itself cannot. Interaction with post-

WIMP user interfaces is not as standardized as in WIMP

interfaces, therefore UI developers still need a lot more

freedom to design and test new interaction techniques. But

in contrast to non-distributed UIs, designing interaction for

DUIs lacks many tools and design patterns and still requires

much know-how about the technical background. For

example, a DUI developer needs to know how to distribute

the UI onto other machines. But network synchronization

with all its issues is a very complex topic and a UI

developer should not need to worry much about it.

The concept of a distributed view model tries to address

those problems by providing a network-synchronized model

of a view to ease development of a shared UI. It provides an

additional abstraction layer that contains the content of a

view as well as view-dependent properties. The distributed

view model is based on the Model-View-View-Model

(MVVM) design pattern [15]. In the MVVM pattern the

data model of an application is separated from its view,

similar to the Model-View-Controller (MVC) pattern. In

contrast to MVC, MVVM provides an additional

abstraction layer, the so-called “ViewModel” which is an

abstract description of the view. The “ViewModel” can also

be seen as a "Model of the View" containing only view-

related information and logic. This allows an UI designer to

mainly focus on UI design but still provides a clean

interface to the non-UI parts of the application. The

Distributed ViewModel pattern, as depicted in Figure 2,

facilitates this clean interface to provide a transparent

distribution of view-related properties which are defined in

the ViewModel. The Distributed ViewModel is much like

the ViewModel as it contains the same information, but in

contrast its contents and structure are already prepared for

network synchronization. All information stored in a

Distributed ViewModel is automatically serialized and

synchronized with all other connected instances of the

application or UI. In practice, the ViewModel can often be

completely replaced by a Distributed ViewModel, if data

types used in the view are compatible with network

synchronization.

In difference to the original MVVM design pattern, the

Distributed ViewModel pattern is designed for transparent

synchronization of ViewModels among all connected

instances. Thereby the Distributed ViewModels are handled

as “network shared objects” which update all other

networked instances of the same object if a property

changes. The update mechanism makes use of a change

notification system within the view and ViewModel. If a

property of a view and consequently of a ViewModel is

modified, the ViewModel fires an event allowing other

objects, such as the Distributed ViewModel, to be notified.

Consequently, distributed instances of the Distributed

ViewModel can be updated accordingly. It is important to

note, that the distributed update of these objects needs to

take care of concurrency issues that might arise if two

instances of the same objects are changed concurrently.

Figure 2: Concept of Distributed ViewModels

The update mechanism of the Distributed ViewModel can

be developed in a nearly transparent way. In our DUI

applications we provided a base class which hid the

network synchronization from the UI development. In our

implementation we have used an object database that

provides a “transparent persistency” mechanism as back-

end [17]. Hence a UI developer never came in direct touch

with networking issues.

AP1: Input Forwarding (Anti-Pattern)

Not every software design that has been tested was

successful. Forwarding of input events from input devices

such as the mouse, stylus or keyboard failed. The

motivation behind input forwarding is to distribute

interaction techniques by simply forwarding the raw input

received from the input devices to all other instances of the

DUI. For example a touch input event on display A is

forwarded onto display B and is processed by both UI

instances in the same way. This design is based on the idea

that input from a remote UI instance is handled in the same

way as local input. Therefore, new interaction techniques

on a DUI would be very simple to implement, because the

UI developer does not need to care about network

synchronization problems at all. The underlying assumption

behind this design is that the CPU is a deterministic and

standardized system. Hence, the same input always results

in the same output. This would also mean that the

underlying visualization of the controls does not need to be

distributed, because the operations on those would result in

the same result on every instance.

This pattern relies on a server-client architecture. All input

events are sent to a server on which they are synchronized

and ordered. This solves many concurrency problems

because every instance gets the same events in the same

order. Additionally, since the resolution of the UI may vary

on different devices, all input data containing position

information (e.g.: mouse-pointer coordinates) need to be

normalized before distribution. Accordingly the receiving

instance needs to map those normalized input data in its

own coordinate space. The UI controls are simply scaled on

such systems, therefore input on a certain control on

display A would be also on the same control on display B,

even when the resolution is different.

Although this design has been successfully used on single-

display, multi-user applications [4] this design failed for

DUIs. The state of the UI on distributed instances of the

system did diverge after a short time. This was caused by

three problems that may occur in such a system: (1) Input

coordinates have been normalized by using floating-point

values. Since floating-point numbers are imprecise, results

of de-normalization on DUIS using displays with different

resolutions always contained a small rounding error. This

small rounding error can be enough that a button is clicked

on one instance and on another it is not. (2) Even when

every instance of the DUI used the same resolution,

interactions based on relative motion (e.g.: translating a UI

element beneath a moving touch point relative to its last

position) caused divergence. The GUI system used for

rendering also used floating-point numbers to position UI

elements. In contrast to our assumption floating-point

calculations do not always have the same result on different

computers [3]. (3) This design only works if the UI is

exactly the same all the time. Even small differences in the

layout may result in divergence of the instances.

Therefore, we suggest that input forwarding should only be

used if no floating-point values are involved and the layout

and resolution of the UI is always exactly the same.

CONCLUSION

In this paper we have summarized our experiences or

“lessons learned” from developing several “natural” and

distributed UIs. The applications we have developed are all

based on either a shared workspace or shared view;

therefore our results may be limited to those types of DUIs.

Still we believe that some aspects of our results are

generalizable and also relevant for other types of DUIs.

In the combination of both, relatively new, fields of UIs a

set of new problems arise. Our software and interaction

design patterns are the results of our first attempts to solve

those problems. However, not all of our attempts were

successful. At this early stage of post-WIMP DUI research

we therefore think that it is important to also report about

these failed approaches, so that other developers and

researchers can avoid making the same mistakes.

In the light of the novelty and complexity of the field,

several new questions for future research are raised:

(1) The Distributed ViewModel pattern still needs a

developer but today UIs are usually created by designers

using UI design tools. Do we need new design tools for

DUIs? (2) Some aspects of a user interfaces are command-

based, for example undo/redo. Such command-based

interactions are not handled in our proposed designs. (3) In

conclusion we believe it is not enough to research only

design patterns and theoretical models, but also develop

real-worlds application on DUI concepts. In our opinion,

only by developing, testing and deploying such applications

to real-world users we will be able to fully understand the

possibilities and constraints of DUIs.

REFERENCES
1. Borchers, J., Buschmann, F. A Pattern Approach to

Interaction Design. John Wiley & Sons, Inc., 2001

2. Deskpiles. http://research.microsoft.com/en-

us/projects/deskpiles.

3. Goldberg, D. What every computer scientist should know

about floating-point arithmetic. ACM Comput. Surv. 23, 1

(March 1991), 5-48.

4. Haller, M., Leithinger, D., Leitner, J., Seifried, T., Brandl, P.,

Zauner, J., Billinghurst, M. The Shared Design Space. In

SIGGRAPH 06: ACM SIGGRAPH 2006 Emerging

technologies, 2006, 29.

5. Haller, M., Leitner, J., Seifried, T., Wallace, J., Scott, S.,

Richter, C., Brandl, P., Gokcezade, A. The NiCE Discussion

Room: Integrating Paper and Digital Media to Support Co-

Located Group Meetings. In Proc. CHI 2010. ACM Press

(2010), 609-618.

6. Hofmeester, K., Wixon, D. Using metaphors to create a natural

user interface for microsoft surface. In Ext. Abstracts CHI

2010. ACM Press (2010), 4629-4644.

7. Hutchins, E., Hollan, J., Norman, D. Direct manipulation

interfaces. Human-Computer Interaction 1, 4 (1985), 311-338.

8. Jacob, R.J.K., Girouard, A., Hirshfield, L.M., Horn, M.S.,

Shaer, O., Solovey, E.T., Zigelbaum, J. Reality-based

interaction: a framework for post-WIMP interfaces. In Proc.

CHI 2008. ACM Press (2008), 201-210.

9. Jetter, H.C., Gerken, J., Zöllner, M., Reiterer, H. Model-based

Design and Prototyping of Interactive Spaces for Information

Interaction. Proc. HCSE 2010, Springer (2010), 22-37.

10. Jetter, H.C., Gerken, J., Zöllner, M., Reiterer, H., Milic-

Frayling, N. Materializing the Query with Facet-Streams – A

Hybrid Surface for Collaborative Search on Tabletops. Proc.

CHI 2011, ACM Press (2011).

11. Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P. A

toolkit for peer-to-peer distributed user interfaces: concepts,

implementation, and applications. In Proc. of EICS '09. ACM

Press (2009), 69-78.

12. Perlin, K., Fox, D. Pad: an alternative approach to the

computer interface. In Proc. SIGGRAPH 1993. ACM Press

(1993), 57-64.

13. Raskin, J. The humane interface: new directions for designing

interactive systems. ACM Press, 2000.

14. Shaer, O., Jacob, R.J.K. A Specification Paradigm for the

Design and Implementation of Tangible User Interfaces, ACM

TOCHI 16, 4, 2009.

15. Smith, J. WPF Apps with the Model-View-ViewModel Design

Pattern. In MSDN Magazine, 2009.

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

16. Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R. Table-

centric interactive spaces for real-time collaboration. In Proc.

AVI 2006. ACM Press (2006), 103-107.

17. ZOIL Framework. http://zoil.codeplex.com/.

