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ABSTRACT 

Triggering commands on large interactive surfaces is less ef-

ficient than on desktop PCs. It requires either large physical 

movements to reach an interaction area (e.g., buttons) or ad-

ditional operations to call context menus (e.g., dwell). There 

is a lack of efficient ways to trigger shortcuts. We introduce 

Kolibri - a pen-based gesture system that allows fast access 

of commands on interactive whiteboards. Users can draw 

tiny gestures (approx. 3 mm) anywhere on the surface to trig-

ger commands without interfering with normal inking. This 

approach does neither require entering a gesture mode, nor 

dedicated gesture areas. The implementation relies on off-

the-shelf hardware only. We tested the feasibility and ex-

plored the properties of this technique with several studies. 

The results from a controlled experiment show significant 

benefits of Kolibri comparing to an existing approach. 
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Large interactive interfaces; pen-input; whiteboard applica-
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INTRODUCTION 

In desktop setups, mouse buttons and keyboard hotkeys offer 

shortcuts to access dozens of commands, which facilitate in-

teractions tremendously. Common hotkey combinations 

(e.g., Ctrl+C, Crtl+V) trigger similar actions across a wide 

variety of applications and are hence used not only by expert 

users. Grossman et al. note that while computer users usually 

only know a small number of shortcuts, they use them often 

[8]. On interactive whiteboards, however, there is still a lack 

of techniques to quickly access context menus and for fast 

activation of frequently-used commands like copy and paste 

or undo and redo. 

 

Figure 1: Kolibri gestures are drawn at such a scale that they 

do not interfere with regular inking. 

All these techniques have their drawbacks. Barrel buttons 

might not be available on every pen and can be pressed acci-

dently. Press-and-hold can be triggered when pausing at the 

beginning of writing or drawing. Finally, the use of delimit-

ers is only possible in combination with content creation or 

tool usage. Gestures have been proposed as an alternative to 

context menus [16, 23]. However, the use of such gestures 

raises the problem of distinguishing gestures from regular 

pen input. Solutions to address this problem include entering 

gesture mode [11, 23], using dedicated gesture areas [20], or 

implicit gesture detection based on context [27]. Neverthe-

less, using dedicated gesture areas influences UI design and 

might require interruptive round trips [5]. Implicit detection 

is never flawless [4] and requires extensive interpretation of 

content when dealing with complex issues. Alternatively, ad-

ditional input tracking data has been used to enter special 

pen-modes. Such interaction techniques may rely on pressure 

[25], tilt [30], roll [35], or hover [9] information from the 

pen. However, the aforementioned solutions are not always 

available on all current interactive whiteboard hardware 

which drastically limits cross-device compatibility and prac-

tical usefulness of these approaches.  

To address these limitations, we introduce Kolibri (Figure 1), 

a new gesture-based interaction technique that allows fast ac-

cess to commands on large, pen-based interactive surfaces. 

Users draw tiny gestures in sizes around 3 mm to trigger 

commands with a pen. They can be well recognized due to 

the high resolution of input tracking. Stroke size is utilized 

to separate gesture candidates from normal inking. This tech-

nique avoids explicit mode switching yet still support a rich 



  

interaction vocabulary. It neither requires any physical but-

ton on the pen nor does it rely on specific gesture areas. It 

does not require information about the context and can easily 

be integrated in various types of applications. Finally, it only 

requires off-the-shelf hardware for implementation.  

In this paper, after introducing related work, we introduce a 

preliminary study that explores the practical applicability of 

this concept and the requirements for our technique. We then 

summarize results from two experiments investigating inter-

ference of the Kolibri technique with regular inking. After-

wards, we present the results from a controlled experiment 

that tests its performance in comparison with an existing ap-

proach, and provide insights about the user experience. Fi-

nally, we will provide ideas of applications and conclude 

with suggestions for future research. 

RELATED WORK 

Shortcuts offer a convenient and fast alternative for certain, 

often repetitive actions to achieve more fluid interactions 

[17, 22]. Approaches like marking menus [17] and Flow 

menus [10] support efficient transitioning of novice use to 

expert use and rely on gestures as shortcuts. However, as 

mentioned before, calling those menus requires an additional 

command which again interrupts the user’s main task. Thus 

our goal was to reduce the need for a dedicated mode-switch 

to perform gestures and trigger commands.  

Reduce Mode Switching 

Some presented techniques reduce the need of explicit mode 

switching before issuing commands. In [6], Forlines et al. 

present a method to fluidly switch between two pen input 

modes, however the technique cannot easily be extended to 

include large numbers of options. Moran et al. [21] infer 

mode based on the current application context. Inferred 

mode detection can be error prone [4] and might not work 

for all types of applications. Hinckley et al. [13] use pigtail, 

a gesture at the end of a lasso, as delimiter to provide 

shortcuts for common selection-action operations. While this 

works well for selection-action type of operations it might be 

hard to integrate in normal drawing or writing tasks or oper-

ations that do not require a selection (e.g. tool-changes, 

undo/redo). Knotty Gesture [31] allows users to draw tiny 

dots as a delimiter. Interaction on the dot allows users to ac-

cess additional, context sensitive functionality. However, it 

has been only explored in the context of paper interfaces, and 

does not provide a rich interaction with one single operation. 

FluidInk [36] uses prefix flicks (fast straight lines), or postfix 

terminal punctuation (fast taps or short pauses) to disambig-

uating gestures from writing in the context of an inking ap-

plication. Since it relies on sequences of gestures, the system 

needs to store and possibly roll back actions in case a gesture 
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2
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is recognized. This might not be suitable for all application 

types. For instance, a flick-gesture might already be used for 

scrolling a document or to pan a map. In such cases it is not 

possible to wait for a second command. Other work explored 

small gestures on mobile devices [26] or grasped objects 

[34]. Considering touch input, Bailly et al. use finger-count 

and radial-strokes to provide rich interactions that can be 

used as shortcuts for experts [3]. Two-finger touch of the 

non-dominate hand is used to distinguish stroke gestures 

from other one-finger interaction. Song et al. use a pressure 

sensitive touch sensor area on the pen barrel [28] to detect 

different grips and gestures, which are used to trigger com-

mands and reduce explicit mode changes. Both these ap-

proaches require additional tracking data which might not be 

available on all interactive whiteboard solutions.  

Explore the Resolution Gap 

Modern mobile devices feature high resolution screens with 

pixel densities over 300 pixels per inch (ppi). Often relying 

on touch input, they have a rather low input resolution. If 

clickable targets are too small, his gap between the input- and 

output-resolution can lead to a problem of input precision. 

The problem is well known as the fat finger problem [33] and 

a lot of research has been conducted to better understand and 

improve input precision [1, 14, 24, 33] for such screens.  

For large interactive surfaces it is the opposite. Display res-

olutions of existing large interactive displays are low, rang-

ing from around 30ppi for LCD or plasma screens to 15ppi 

for some projector-based setups. These surfaces mostly use 

pen input which can be captured at a very high resolution. 

Many manufacturers, such as SMART1, Promethean2, Poly-

vision3 and Hitachi4, achieve an input resolution that is up to 

40 times higher than the display resolution of a typical pro-

jector based whiteboard system. Interestingly, this resolution 

gap has not yet been explored.  

Our work brings a new concept that utilizes this resolution 

gap to interpret tiny user-input, which cannot be properly dis-

played, as gestures which can be used to trigger commands.  

PRELIMINARY STUDY 

In order to test the general feasibility of this concept and dis-

cover properties of Kolibri gestures, we conducted an explor-

atory study with 20 participants (2 left-handed) in the age 

from 19 to 27. The goal of this study was to test the partici-

pants’ general ability to perform recognizable tiny gestures 

to help us choose gesture types and sizes. We also measured 

the time for performing gestures as a basis for further studies. 

Apparatus & Procedure  

Participants were asked to draw twelve pre-defined gestures 

taken from Wobbrock et al. [2] (Figure 2) using a digital 

Anoto5 pen (DP-301).  

3 http://www.polyvision.com/solutions/interactive-whiteboards/compare-polyvision-boards 

4 http://www.hitachisolutions-eu.com/mediaresources/liens/fxTrio88w/fxTrio88W-web.pdf
  

5 http://www.anoto.com/  
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Figure 2: The twelve gestures used in the experiment. The 

point indicates the starting position for each gesture. 

Since the resolution of the projector-based interactive white-

board was too low to display instructions like tiny bounding 

boxes, we printed all instructions on a sheet of paper with 

Anoto pattern and attached it on a vertical surface at a height 

convenient for each participant to draw. The participants per-

formed the task on the paper using pens with plastic tips 

which did not leave permanent marks on the surface, similar 

to writing on a whiteboard surface. During the experiment, 

participants were first asked to perform each gesture within 

6 differently-sized boxes (8, 5, 3, 2, 1.5, and 1mm) for train-

ing purposes. Afterwards, participants were asked to perform 

each gesture 10 times as fast, accurate, and small as possible, 

in a free space without bounding boxes. All participants’ 

written strokes were streamed to a connected PC. The gesture 

recognition was performed using the publicly available C# 

implementation of the $N-recognition algorithm, presented 

in [18]. We used its available gesture templates. 

Results 

Both P19&P20 were performing the gestures much smaller 

than the rest (M=1.5mm vs. 3.3mm overall) which resulted 

in very low recognition rates for some gestures. Thus we con-

sidered them to be outliers and removed them from the anal-

ysis. The results for the remaining 18 participants show 

that performing small-scale gestures that can be successfully 

captured and recognized is indeed possible with existing ges-

ture recognition software. The gesture sizes ranged from 

around 1mm to 7mm, the average size was 3.3mm (SD = 

0.98). The overall recognition rate for all gestures was 89.3% 

percent and was higher than 95% for 5 of the gestures. This 

result is based on existing, unmodified gesture recognition 

software and standard gesture templates. Our other experi-

ments showed that with adjusted software and custom tem-

plates, recognition rates can be improved further.  

We measured the time it took participants to perform the ges-

tures (Figure 3). The gestures can be categorized in three 

groups according to the execution time: <500ms (fast), 

500ms < 1000ms (medium), and >1000ms (slow). We no-

ticed that all gestures in the fast category have not more than 

one corner; gestures in the medium category have either two 

or three corners; and finally, slow gestures have more than 

three corners. This is in line with the two-thirds power law 

[32] which states that less complex shapes can be performed 

faster. A repeated measures analysis of variance showed a 

main effect of gesture complexity on the execution times 

(F1,17.7 = 33.7, p < .0001 (Greenhouse-Geisser corrected)). 

Pairwise comparisons (Bonferroni adjusted) showed that the 

fast category was significantly faster than medium (p < 

.0001) and the slow category (p < .001). 

 

Figure 3: Execution time of gestures in seconds. Gestures are 

grouped to be fast (green), medium (yellow) and slow (red). 

The medium category was also significantly faster than the 

slow category (p < .001). We found no significant difference 

for the execution times for both the gestures in the fast cate-

gory (p = .06) or in the medium category (p = .053).  

Thus we suggest to choose gestures with no more than one 

corner for use cases, where fast execution-times are crucial 

(e.g., often used shortcuts like undo/redo). However, simpler 

gestures might result in more false activations. Our investi-

gation of false positives will be presented in next section.  

DISTINGUISHING GESTURES FROM NORMAL INKING 

One of the most important pre-requisites for Kolibri gestures 

to work well on an interactive whiteboard is to ensure that 

they do not interfere with regular inking. Based on the meas-

urements from the preliminary study, we defined several 

thresholds to distinguish gestures from regular inking. With 

these thresholds we then tested false positives in two cases: 

regular whiteboard use and an extreme case that includes a 

large number of possible gesture candidates.  

Thresholds 

We used the minimum (1mm) and maximum (7mm) sizes 

determined in the preliminary study as a size threshold to dis-

tinguish gestures from normal inking. We anticipated that 

during normal inking and handwriting, simple short strokes 

that are within the size threshold, but have less complex 

shapes, would be very common. Consequently we also de-

fined thresholds for a minimum number of stroke control-

points and also a minimum creation time. Table 1 summa-

rizes all the chosen thresholds. 

Stroke Size 1mm < x < 7mm 

Min. Creation Time More than 100ms 

Min. Point-count More than 10 tracking points 

Table 1: The thresholds that separate the ranges of gesture 

candidates from normal inking. 

False positives during natural whiteboard use 

To gather information on strokes created during normal use 

of whiteboards and to test this data against our thresholds, 

we collected all the ink-strokes from six different teams who 

performed collaborative brainstorming sessions. The partic-

ipants used a custom made, freeform sketching application 

on an interactive whiteboard to create sketches and take 



  

handwritten notes. Each team consisted of three people and 

each session lasted about one hour during which the teams 

created and discussed different ideas.  

We analyzed the resulting sketches and handwritten notes 

which consisted of a total of 4,283 strokes. We calculated a 

bounding square for each stroke to determine its size and also 

counted the number of Anoto points in each stroke as an in-

dicator for stroke complexity.  

 

Figure 4: Stroke count in different sizes during normal use of 

a whiteboard, before (blue line) and after (red line) applying 

point-count threshold. The distribution shows a considerable 

dent just around the targeted size of Kolibri gestures. 

The blue graph in Figure 4 shows the number of strokes for 

different stroke sizes. The line shows that for a large number 

of strokes the bounding square is only up to 1 mm large. 

These are simple dots, common for punctuation marks. For 

strokes with a bounding square between around 1mm and 

7mm (our targeted size of Kolibri gestures) the number of 

strokes drops more than 50% before climbing again and 

reaching additional peaks at 15mm and 21mm. After this the 

number continuously goes down for larger sizes. This means 

that during regular inking, much less strokes are generated in 

the size range that is suitable for Kolibri gestures.  

The majority of the strokes (63%) are between 7mm and 

50mm. This means that by just applying our lower and upper 

size-thresholds (Table 1) we can already reduce the number 

of gesture candidates by more than 94%, which are 237 

strokes in this study. If we also eliminate all strokes with less 

than 10 control-points (red line in Figure 4) we can reduce 

this number by almost 99%, which means only 47 strokes are 

considered as gesture candidates. Finally, also applying the 

time threshold leaves us only 18 possible candidates, 13 of 

which are recognized as gestures with the $N-recognizer. 

This means that using our technique, only 13 out of 4,283 

regular ink-strokes would have accidently been recognized 

as a gesture (0.3% false positives).  

False Positives in Extreme Cases 

As small details in drawing or writing might trigger more 

false activation than usual, we tested an extreme case for 

writing as part of the preliminary study. 20 participants were 

asked to write the phrase “…in the trial: “Multiple lines with 

multiple “i” s!” …” three times on the whiteboard. The 

phrase contains a large number of dots, commas and quota-

tion marks which are all potential candidates for Kolibri ges-

tures. Even though all participants had to write the same sen-

tence, the different handwriting resulted in a very diverse set 

of tiny stroke-samples. In total we collected 1,225 strokes 

smaller than our size threshold (7mm). After applying all 

thresholds, the average recognition rate for all gestures was 

1.02%. Statistical analysis showed no major effect of gesture 

complexity (see Figure 3) on false positive (p = .12), which 

is not like we expected. This indicates that simpler gestures 

do not necessarily result in higher false activation. For exam-

ple, the pigtail-gesture was only recognized once. We no-

ticed that differences in handwriting resulted in largely dif-

ferent results for some participants. For example, the circle 

gesture was falsely recognized 15 times for one participant 

and only 3 times for the remaining 19 in total. For this one 

participant also the rectangle and triangle was recognized 

disproportionately often. Looking at the collected strokes 

more closely we noticed that this particular participant drew 

little loops for dots (colons, “i”) which resulted in high num-

bers for false positives. Allowing users to record and choose 

custom gestures might help mitigate similar problems.  

After eliminating outliers outside 3 standard-deviations from 

the mean (2.5% of all data), even for this extreme test-case 

the false positive rate went down to 0.5%. Together with the 

previous result, this indicates a very low interference from 

Kolibri gestures to normal inking. Moreover, the orientation 

of a gesture is not considered in current implementation. 

Taking the orientation into account could even further reduce 

false positives. As a conclusion, the feasibility of Kolibri 

technique is further confirmed. 

KOLIBRI GESTURE PERFORMANCE 

In the next step, we investigated the performance of Kolibri 

for triggering commands. We conducted a controlled exper-

iment to compare two different techniques suitable for our 

whiteboard system. Both techniques are described below. 

Techniques 

Kolibri 

To test the performance of Kolibri, we selected the following 

four gestures to trigger the different commands: Pigtail, Cir-

cle, Question-mark and Caret. The gestures were chosen 

based on the speed results from our preliminary study. While 

being a very similar shape, Caret was preferred over V and 

Check because it had a higher recognition rate. After con-

ducting pilot tests, the Pigtail was changed to an Alpha (ro-

tated pigtail) and the Question-mark was changed to an S 

(Question-mark flipped horizontally) as participants were 

more familiar with the shapes and drew them more consist-

ently. For this study we used the $N-recognizer with our own 

gesture templates for all gestures. 

Dwelling + Marking-Menu (D+MM) 

As a baseline we used a combination of dwelling followed 

by a short pen-movement to trigger a command. Different 

movement directions trigger different commands. In our 

study four directions (up, down, left or right) were used. The 



  

entire action resembles shortcut-use of a one-level Marking-

menu which is activated by a dwelling gesture. In our exper-

iment, the activation time of dwell was set to 800ms, which 

is a timeout used by Microsoft6 for their pen-operated sys-

tems. A circular progress bar was used to visualize the 

elapsed time. The movement threshold was two pixels. 

While there are other mode switching techniques that might 

be faster [19] we chose Dwell + Marking-Menu because it is 

a similarly flexible technique that can be used with any type 

of hardware and in any type of application and currently is 

the standard technique for many commercial systems. 

Hypothesis 

Based on previous studies and our experience with the tech-

niques, our hypotheses are: 

Hypothesis 1: Kolibri will perform faster than D+MM. 

Hypothesis 2: Kolibri will be more error-prone. 

Hypothesis 3: The performance for small-scale tasks will be 

better. 

Hypothesis 4: Kolibri will be preferred. 

Participants  

We recruited 6 male and 2 female participants from a com-

pany and a university. All participants were right-handed and 

used their dominant hand to interact with the system. Their 

ages ranged from 25 to 29 and their height ranged from 155 

to 188 cm. None of them had ever used an interactive white-

board before and only one participant had used other stylus 

input devices such as tablets and mobile phones before. Four 

participants often use 5-10 keyboard shortcuts and the other 

four of them use 10-20.  

Apparatus 

The experiment was conducted in a quiet room equipped 

with an 80” Polyvision eno 2610 interactive whiteboard. A 

NEC U300X short-throw projector with a resolution of 

1024×768 was used for projection. The board was calibrated 

at the beginning of user testing. A Polyvision DP-301 digital 

Anoto pen with a plastic tip was used for input. All data cap-

tured by the pen was streamed to a connected PC. Custom 

software written in C# was used to display the task and per-

form real-time gesture recognition using the Protractor im-

plementation [18] of the $N algorithm. The software also 

logged all user interactions including trial times and errors. 

Design 

A within-subject design with two techniques (Kolibri, 

D+MM) and two scales (Small, Large) as independent vari-

ables was used. Taking a similar approach as [15], the task 

was to connect bubbles using corresponding colors. The in-

teraction techniques are used to switch ink colors after each 

bubble connection. Each technique provides 4 shortcuts for 

participants to switch between 4 (Red, Green, Blue and Yel-

low) colors (Figure 5). 
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Figure 5: Experiment tasks in Large (left) and Small (right) 

scales. The check icon on each condition is the feedback pro-

vided when a designated color switch is successfully performed 

For each trial, bubble connections had to be performed in 12 

pre-defined directions which appeared in a pseudo random-

ized order. This made sure that the bubbles were not rendered 

off-screen and stayed close to the starting point. The starting 

point was located at a convenient height for each user. After 

completing a bubble connection, a new bubble would appear. 

Both the last and the new dot would change to a new color. 

Color changes were randomized and each color appeared an 

equal number of times per trial. Before connecting two bub-

bles, participants had to first switch to the correct color using 

the currently active technique. In case of failure, they had to 

retry until they succeed before starting next connection.  

From our experience, hand posture might influence the per-

formance when people draw precisely on vertical surfaces.  

Thus we were interested in if the movements of the hand 

would affect posture and result in different performances. 

We designed the tasks in two scale levels. The Large scale 

(Figure 5 (left)) tasks required participants to move their en-

tire arm, while the Small scale (Figure 5 (right)) only re-

quired movement of the fingers and the wrist. To motivate 

users to perform the techniques as fast as possible while 

keeping errors to a minimum we introduced a high-score 

which was presented after each trial. Different high-scores 

were used for the different techniques as well as for the train-

ing sessions. The high-score for each trial was based on the 

averaged color switching time. For each error, the score was 

further reduced to make participants realize the cost of errors. 

Procedure 

After a short introduction, participants were asked to fill out 

a short questionnaire on general demographics and shortcut 

use. Before starting with each technique, participants were 

trained to perform the technique and learn the shortcuts by 

heart. A training session ended once a participant was able to 

beat a high-score, which was defined based on an average 

score from our pilot study. Each training session took be-

tween 5 and 10 minutes for all participants. After training, 

participants were asked to perform 6 trials for one technique 

(3 for each scale), and then continue to the next technique. 

This whole process was replicated twice. To avoid confu-

sion, there was a short training session to help participants 

http://msdn.microsoft.com/en-us/library/aa926305.aspx


  

recall before they performed each technique the second time. 

Each participant performed 288 color-switches (2 techniques 

× 2 distances × 3 trials × 2 replications × 12 directions). 

Counting all 8 participants, 2,304 color switches were rec-

orded in total. The presentation orders of technique and scale 

was fully counterbalanced to account for learning effects. 

The entire experiment took about 40 minutes per participant. 

Data Collection 

We collected both quantitative and qualitative data for both 

techniques. Quantitative data was recorded and logged in the 

program. Qualitative feedback was collected using a ques-

tionnaire after the whole test. Participants gave opinions and 

preferences for each technique with comments and ratings on 

a Likert scale. For quantitative analysis we measured the 

time for each phase of a color-switch task. The overall task 

completion time is the entire time between finishing the last 

bubble-connection and starting the next one after switching 

to the correct color (Figure 6, t(3) – t(0)). We also logged the 

time between finishing the last bubble-connection and start-

ing to perform the technique (preparation time, t(1) – t(0)), 

the time it took to perform the technique (execution time, t(2) 

– t(1)) and also the time it took to return to the bubble and 

start drawing the next connection (return time, t(3) – t(2)). 

 

Figure 6: For each task the preparation, execution and return 

time was logged. 

We also logged different types of errors. For Kolibri we 

logged threshold errors which occurred when a gesture that 

was performed outside of our thresholds for gesture candi-

dates (thresholds see Table 1); color errors which occurred 

whenever a wrong gesture was performed; and recognition 

errors, which occurred when a stroke was within the thresh-

olds, but was not recognized as any gesture. For D+MM, we 

counted dwelling errors which happened every time users 

failed in performing the dwell-gesture; and also color errors, 

which again occurred when the wrong color was selected. 

Results 

Before analyzing the quantitative data, we eliminated all out-

liers outside 3 standard deviations from the mean of the over-

all task completion time. 46 data points (2%) were eliminated 

in total. For all tests an alpha level of .05 was used. The 

Greenhouse-Geisser correction was used if the assumption 

of sphericity was violated. For all presented bar charts, the 

error bars indicate the range of two standard errors of the 

mean (above and below the mean).  

Hypothesis 1: Kolibri will perform faster than D+MM. 

Repeated measures analysis of variance showed a main ef-

fect on the overall task completion time between techniques 

(F1,7 = 8.98, p < .01). As we can see in Figure 7, on average 

it was 2,030ms (SD = 260) for Kolibri and 2,275ms (SD = 

227) for D+MM, which results in a 246ms difference.  

 

Figure 7: Overall task completion time for both techniques. 

The different color shades represent the 3 time phases: prepa-

ration, execution and return (from left to right).  

To understand the time cost in different phases for perform-

ing the technique, we removed all the data points that include 

errors and performed more detailed analysis of the different 

phases. Overall, task completion time Kolibri was again sig-

nificantly (F1,7 = 15.5, p <.01) faster for Kolibri (M = 

1,895ms, SD = 234). It was 285ms faster than D+MM (M = 

2,181ms, SD = 220).  

As illustrated in Figure 8, the preparation time for Kolibri is 

significantly longer than for D+MM (F1,7 = 93.47, p < .0001). 

With the D+MM technique, participants took much shorter 

time to prepare as they can recall the shortcut for current 

color while performing the dwelling gesture. Thus in order 

to save time, they would start with the dwelling gesture right 

away after finishing the previous bubble connection. In con-

trast, with Kolibri they had to recall the correct gesture be-

fore executing it. As one participant put it: “Long down gives 

some extra time to think of the color”. 

 

Figure 8: Comparison of time performance between tech-

niques in different phases (without errors). Mean values are 

shown in the bottom of each bar. 

Being almost 5 times faster, the execution time for Kolibri is 

significantly different from D+MM (F1,7 = 767.66, p < 

.0001). Participants took only 244ms (SD = 54) to draw a 

(complex) Kolibri gestures but took over 400ms on top of the 



  

800ms dwell-timeout for the one-level Marking Menu com-

mand stroke (1,210ms total). This seems to be surprising at 

first since the command-stroke is a simple, straight line with-

out any corners. But participants might need some additional 

time to process the visual feedback indicating expiration of 

the time-out before starting the command stroke. This further 

increases the actual cost of dwelling. Of course, a shorter 

timeout can be considered, however this would increase the 

number of false activations during regular inking. The 

shorter execution time for Kolibri gestures makes them espe-

cially well-suited for use-cases where the same gesture has 

to be performed in short succession, for example repeatedly 

triggering an “undo”-command to go back several steps. The 

results showed no significant time difference between the 

four different Kolibri gestures (p = .12), indicating that sim-

ilar performance can be achieved with all gestures with a 

similar complexity. Further analysis showed no significance 

on the return time (p = .85).  

The results confirm our hypothesis for the task completion 

time and also show a much better performance of Kolibri for 

the execution time. 

Hypothesis 2: Kolibri will be more error-prone. 

The error rate for each condition was calculated as the per-

centage of color-switch tasks where at least one error oc-

curred. In total the error rate for Kolibri was 8% (M = .083, 

SD = .055) and 6% (M = .063, SD = .040) for D+MM.  Re-

peated measures analysis of variance shows no significant 

difference (p = .2) between the techniques. Thus the hypoth-

esis is not supported. 

We performed a more detailed error analysis to gain more 

insight about reasons that caused errors (Figure 9).   

 

Figure 9: The percentage of the different types of errors for 

each one of the two techniques. 

For the D+MM technique, 73.8% of all errors were dwelling 

errors. This means that the participants moved the pen more 

than 2 pixels before the 800ms activation time had elapsed. 

This can either happen if the pen tip is not stably planted on 

the surface or if participants grow impatient or move the pen 

too early. Increasing the movement-threshold can help re-

duce these errors, however in our experience this will cause 

more false activations, especially during precise interaction.  

For the Kolibri technique, 67.2% of the errors were threshold 

errors, meaning that users drew the gestures too large, too 

small or too fast. Several users commented that it was hard 

for them to know how small they needed to draw the gestures 

due to the lack of size-hint or reference. One participant, who 

always drew the Kolibri gestures directly in the bubbles for 

small scale tasks, explained that he actually used the small 

bubbles as bounding boxes to avoid drawing gestures too 

large. Being inspired by this, we think Kolibri technique 

could benefit from subtle size references to reduce size-er-

rors. For instance a thin grid that is only visible when being 

observed closely could be placed on the drawing canvas. 

Similarly the projector-pixel grid or even the pen-tip could 

function as a subtle size reference.  

If a stroke within the thresholds could not be recognized as 

any gesture, it was counted as a recognition error. Such er-

rors account for only 2.4% of all errors collected for Kolibri 

technique. They could be further reduced by customizing the 

gesture recognizer or providing unobtrusive feedback to help 

people draw better in such small scales.  

Repeated measures analysis showed that there is a significant 

difference on error recovery (F1,7 = 6.85, p < .05). On aver-

age, participants needed 1.30 (SD = .27) attempts to recover 

from an error in Kolibri technique, which is more than for 

D+MM (M = 1.11, SD = .13). However with a much shorter 

execution time, Kolibri has shorter time cost (M = 1,601ms, 

SD = 566ms) for correcting errors than D+MM (M = 

2,098ms, SD = 481ms). The error recovery can be improved 

by providing users better feedback about the caused errors. 

As an additional note, there is no significant difference on 

the error-rate between different Kolibri gestures (p = .78). 

Hypothesis 3: Performance for Small-scale tasks will be bet-
ter 

Repeated measures analysis of variance showed a significant 

difference (F1,7 = 6,41, p < .05) for the task completion time, 

between Large and Small scale tasks (error data points re-

moved). It is about 2091ms (SD = 258) for Large tasks and 

about 1992ms (SD = 173) for Small tasks. For each technique 

separately, however, the current data does not show any sig-

nificance between two scales. The scale of drawing might 

have an influence on the performance speed as they require 

different hand movement. But more studies are needed to 

better understand this.  

Scale has a significant effect on the number of threshold er-

rors for Kolibri technique (F1,7 = 9.9, p < .05). Participants 

made more errors in Large scale condition trials (M = 7.4, 

SD = 3.4) than in Small scale conditions trials (M = 3.1, SD 

= 2.2). This partially supports the hypothesis 3. The com-

ments from participants explained the reason. Four partici-

pants explicitly mentioned that they tended to make Kolibri 

gestures bigger in Large scale tasks.  

Hypothesis 4: Kolibri will be preferred. 

Five out of eight participants preferred Kolibri over D+MM 

technique, however given the small number of participants, 

further experiments are needed to study user preference. Par-

ticipants who preferred Kolibri gestures all named the faster 

performance as the main reason for this choice. Of the re-

maining participants who chose D+MM, two mentioned that 

they felt they had made fewer errors with it and one men-

tioned that the dwell time could be used to recall the correct 

shortcut.  



  

 

Figure 10: User rating for learnability and the amount of con-

centration required. 

The ratings from participants for easy to learn and required 

concentration revealed some disadvantages of Kolibri com-

paring to D+MM (Figure 10). Kolibri received lower ratings 

in both categories. Several participants commented that D+ 

MM shortcuts were easier to memorize and we also noticed 

that all participants took a longer training session for Kolibri. 

Further studies are needed to investigate the cognitive load 

and learning aspects of Kolibri.  

Nevertheless, we believe the performance of Kolibri tech-

nique would be highly improved by users’ practice. As one 

participant mentioned: “Marking Menu gives you time to 

think during the long down, but after a while you don’t need 

it any more”. Another similar quote is: “It is faster once we 

remember the gestures and (feel) comfortable using it”. 

DISCUSSION 

In this section, we further discuss properties of Kolibri. 

Effects of hand posture  

Observations of users interacting with our interactive white-

board showed that users tend to rest their palm to increase 

input accuracy for very precise interactions like performing 

Kolibri gestures. For larger pen movements however users 

tend to lift the palm to achieve faster movement speed. Thus 

we anticipated that in the study users might switch between 

resting and lifting the palm in the Large scale conditions, 

which was not confirmed by the experiment. Instead all 8 

participants always rested their palm or fingers on white-

board while performing Kolibri gestures. Therefore, there is 

no additional time required for resting the palm before per-

forming the gesture. For the D+MM technique, 6 participants 

also rested their palms for Small scale tasks and 4 of them 

did the same for Large scale tasks.  

Some touch-sensitive whiteboard systems do not allow users 

to rest their palms as this might be recognized as user input. 

This might influence the users’ ability to perform Kolibri-

gestures. Initial tests suggest that the gesture size increases if 

people do not rest their palms, but so does regular handwrit-

ing input. This means that shifting the thresholds to a differ-

ent (larger) size-range might be more suitable for touch-sen-

sitive systems that do not support palm rejection. Further in-

vestigation is needed to study the effects of different hand 

postures on Kolibri gesture input. 

Gesture Properties 

To better understand which gestures might be suitable for our 

system, we have started look closely the raw input data sent 

by the digital Anoto pen. We noticed that the signal can be 

very noisy which might affect certain stroke features often 

used in gesture recognition software like parallelism, self-in-

tersection or closeness. Similarly it is also hard to draw per-

fectly symmetrical shapes, as can be seen by comparing the 

recognition results for the Check and the V gesture in our first 

experiment (Figure 2). Despite the similarities in shape, 

Check resulted in a significantly better recognition rate than 

V (F1,19 = 6.13, p < .05) . 

Also placing the pen on the surface or lifting the pen from 

the surface might result in tiny “hooks” at the beginning or 

end of the actual gesture-stroke, which might further degrade 

recognition rates. Additional preprocessing (e.g. removing 

the first and last part of the stroke, smoothing straight lines) 

could further improve recognition rates.  

So far, gesture orientation is not considered in our system. 

Performing gestures in different directions could be used to 

trigger different commands. For example, performing an ar-

row in different direction could trigger different navigation 

commands. Using the same gesture in different orientations 

is especially helpful for related actions like undo/redo. 

Expert Performance Outlook 

Expert users use a lot of shortcuts to facilitate faster interac-

tion performance and we believe that the Kolibri technique 

has a large potential for users who have more training in per-

forming the gestures. Although we have not yet tested the 

expert use of Kolibri with experiments, we still would like to 

share some experiences from a lab member who is very fa-

miliar with both tested techniques as an outlook to what is 

possible with the technique. 

He performed the same tasks as other participants in our con-

trolled experiment. On average, the task completion time for 

Kolibri was 1135ms which is 760ms faster that the average 

values from our experiment. For D+MM the average com-

pletion time was 1605ms which was 576ms faster. In total, 

Kolibri gestures where 470ms (43%) faster than the D+MM 

technique. In his fastest run he was able to complete an entire 

color switch task in our experiment in 578ms with Kolibri, 

more than twice as fast as the fastest performance for D+MM 

(1,162ms). We believe that these results show the great po-

tential for Kolibri gestures to allow for more fluid white-

board-interactions. We also anticipate that for expert users, 

the thresholds for separating gesture candidates and normal 

inking could be adjusted to consider faster execution times. 

Scalability and Mnemonics 

The Kolibri technique mainly utilizes input size to distin-

guish gesturing from normal inking. As long as the gesture 

can be performed at this tiny scale, few other limitations ex-

ist. Therefore, theoretically any character, number and shape 

can be used as a gesture. As also suggested by one partici-



  

pant, the same characters used in commonly known key-

board shortcuts (C for copy, V for paste) could hence be used 

to trigger the same commands on the whiteboard, making use 

of already existing knowledge of users and thus facilitating 

faster learning. Also similarities between button icons and 

gesture-shapes can be used to help users remember the cor-

rect shortcuts. We have already started to collect sample-data 

for characters and numbers and are currently evaluating 

recognition rates and false positive-performance. 

During the study we also noticed that participants sometimes 

began with a wrong gesture, but instead of lifting the pen and 

starting again they tried to directly perform the correct ges-

ture in the same stroke. In the study this mostly resulted in 

recognition errors. However, if recognized correctly, such 

combined gestures could actually be helpful in stringing to-

gether multiple commands (e.g. changing both color and 

stroke-with in one combined gesture). This however is cur-

rently not supported by our system.  

Displays resolution 

For our system the size of each ink stroke is an important 

classification feature. If better display technologies with 

higher resolutions cause people to write smaller, differences 

in regular stroke and gesture size might become smaller and 

distinguishing Kolibri gesture candidates might get more dif-

ficult. While we cannot predict how higher resolution will 

influence user input it seems that there is no direct connec-

tion between display resolution and handwriting. In [12] 

Guimbretière notes that handwriting input on their interac-

tive whiteboard system tends to be similar in size to a 96pt 

font. The custom built Stanford Interactive Mural system 

[11] that was used to determine this value has a screen reso-

lution of 64ppi which results in an absolute text-height of 

38.1mm. In false positive experiment, the average text size 

was 36.9mm, meaning that text was smaller on the lower res-

olution device, not the other way around. While further study 

is needed to test and confirm this observation, it seems that 

higher displays resolution does not automatically result in 

smaller. This is a promising indicator that Kolibri gestures 

will still work as display technologies improve. 

APPLICATIONS 

Technically, Kolibri can be implemented on a device driver 

level and easily be combined with many existing applica-

tions. Because they consist of only a single stroke and are 

both tiny and fast, it is feasible to briefly hold back input 

events without interfering with normal interactions. If a ges-

ture is recognized, e.g. undo, on top of PowerPoint, it can be 

detected before sending a click event and send a keyboard-

shortcut instead. Thus integration in any type of application 

is very easy and gestures are consistent for different domains. 

Kolibri gestures also do not require any knowledge of the 

current application context and are thus well suited for issu-

ing global commands (e.g., navigation commands, 

undo/redo). At the same time, the small size of Kolibri ges-

tures provides new possibilities for context-aware interac-

tions. The tiny activation area supports very precise actions, 

which means that gestures can be performed on top of a sin-

gle stroke, directly modifying its characteristics without re-

quiring a dedicated lasso-selection beforehand. This can en-

rich the interaction vocabulary of an existing interface in a 

large extent. Being able to use arbitrary shapes as well as 

characters or numbers makes Kolibri gestures well suited for 

a wide range of different commands including tool-changes 

but also parameter changes or gestures on icons [7]. 

Missing the visual feedback can also bring benefits. With the 

increasing number of large interactive surfaces that support 

input from multiple people, secure authentication on public 

surfaces is becoming more important [29]. Applying the con-

cept of Kolibri, people could simply draw tiny shapes or let-

ters on top of the input field to enter a password. The tiny 

movements of the pen can hardly be observed by others, thus 

allow more secure input in a public environment.  

CONCLUSION AND FUTURE WORK 

Summarizing, we presented a novel interaction technique 

that allows users to trigger shortcuts on interactive white-

boards with current off-the-shelf hardware. It achieves robust 

recognition, as well as very low false positives. A controlled 

experiment shows that issuing shortcut commands with this 

technique is much faster than with Dwell + Marking Menu. 

The Kolibri technique utilizes a largely unexplored gap be-

tween display-resolution and input-resolution on whiteboard 

surfaces. In this paper we explored the feasibility and prop-

erties about how people draw tiny gestures on a vertical sur-

face. This brings us new challenges for gesture design and 

recognition when it comes to very small sizes. Those can be 

taken as suggestions for the design and implementation of 

other small-scale gesture systems. Further exploring this de-

sign space gives us a new perspective on the possibilities of 

pen-input on large interactive surfaces and will lead to novel 

application areas. 

In the future we will improve several aspects of the Kolibri 

technique. Given the lack of visual feedback while perform-

ing tiny gestures, we are interested in how to provide instruc-

tions for people to perform and recall gestures in this context. 

Furthermore, to help people recover from errors, we want to 

study how to provide proper feedback in an intrusive way. 

We plan to conduct long-term studies to test the expert use 

of Kolibri technique. Finally, we are also interested in testing 

the influences of other factors such as orientation of the in-

teractive surface, different surface friction, and form factors 

of the pen or thickness of pen-tips.  
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