
Flexible Camera Setup for  Visual Based Registration 
on 2D Interaction Sur face with Undefined Geometry 

using Neural Network 

Ary Setijadi Prihatmanto1, Michael Haller2, Roland Wagner1 

 
1 Kepler University of Linz, Institute of FAW,  Altenbergerstrasse 69, 

A-4040 Linz, Austria, { asetijadi,rrwagner} @faw.uni-linz.ac.at  
2 Upper Austria University of  Applied Science and Digital Media, 

Hagenberg, Austria, haller@fh-hagenberg.at  

Abstract. Camera setup, calibration and visual based registration of 
Augmented Reality (AR) based tabletop setups can be a really complicated and 
time-intensive task. Homography is often used liberally despite its assumption 
for planar surfaces, where the mapping from the camera to the table can be 
expressed by a simple projective homography. However, this approach often 
fails in curved and non-planar surface setups. In this paper, we propose a 
technique that approximates the values and reduces the tracking error-values by 
the usage of a neural network function. The final result gives a uniform 
representation of the camera against combinations of camera parameters that 
will help in the multi-camera setup. We present the advantages with 
demonstration applications, where a laser pointer spot and a light from the lamp 
will be tracked in non planar surface.  

Keywords: camera calibration, visual based registration, tabletop application, 
function approximation, neural network 

1   Introduction 

Tabletop augmented reality (AR) applications with multiple cameras and projector 
systems are becoming more and more popular. The current generation of projectors 
allows a fast combination of multiple projectors that can be used simultaneously. 
Molyneaux and Kortuem demonstrate in [1], how the future environment can be more 
accommodative to the ubiquitous display paradigm rather than conventional 
collection of displays. 

Bimber and Raskar describe in [2] a novel approach to create an application that 
has taken augmented reality beyond traditional eye-worn or hand-held displays. They 
call this technology Spatial Augmented Reality (SAR). Its popularity is also boosted 
by the fall in cost and availability of projectors, high-resolution cameras, personal 
computers and 3D graphics cards. Moreover, new generation of projection such as  
Dome projectors [3] gives new opportunities to create novel interaction metaphors. 

 Despite the availability of other tracking technology, it has been shown in the 
recent years that vision-based tracking systems have a tremendous potential. The most 



 

common method for visual-based pose registration is the use of a homography matrix 
along with quadratic lens distortion model. Despite its success in the past, it suffers 
from inherent limitations. Hence, a more efficient and flexible solution that gives the 
possibilities for automation and adaptability is required to support the display ubiquity 
paradigm and the trend to utilize non-planar surface such as dome projection surface 
[3]. 

This paper describes the technique to use a vision-based system for visual based 
registration on 2D interaction surface with undefined geometry in the tabletop 
application. Our technique utilizes the fact that tabletop application can control what 
information that can be perceived by the camera to create a more adaptable and easy- 
to-configure vision-based sensor. It also utilizes the universal approximation nature of 
multi-layer perceptron so the system can adapt to as wide as possible geometry class 
of interaction surface.  

Furthermore, the technique is designed in a way that the system can be configured 
without the knowledge of the internal camera parameters. The result gives a uniform 
camera representation despite the various possible camera parameter combinations. 
This feature makes fusion policy among cameras in multi-camera setup can be 
managed in more tangible manner. Although this paper emphasizes on tracking 
purposes, it will also shows that the extension to more general purposes is also 
possible. 

In the next section, we review the related work on general camera calibration and 
related work on the application of neural network in connection to camera usage. 
Next, we describe the proposed framework starting by explaining the general 
overview of the problem. It is then followed by a description on the proposed method. 
In section 4, we demonstrate our results. Next, we illustrate various possibilities of 
extension and finally, we conclude with  the future work. 

2   Related Work 

Good and efficient camera calibration and visual registration are becoming more and 
more important over the last decade. As described by Baratoff et al., the calibration of 
an AR system can be very complex and has to be done with care [4]. A good 
calibration is important when we need to reconstruct a world model and interact with 
the world based on the information that comes from an optical tracking system. Tsai’s 
techniques can be seen as one of most influential papers in the last decade [5] [6]. The 
goal of the camera calibration in a conventional sense is to find the internal quantities 
of the camera that affects the imaging process.   

In contrast, we do not model the geometry of the camera. Neither do we have to 
know the camera parameters nor do we have to know the relationship between the 
camera and the projected image. We only generate an approximation of the function 
that is triggered by the camera existence according to the application context by using 
the neural network’s universal approximation feature to coup the non-linear dynamic 
of the imaging process due to distortions and/or non-planar geometric shape. 

There are only few reported publications dealing with the use of neural networks in 
camera calibration [7, 8, 9, 10, 11, 12]. These techniques use neural-networks either 



 

to learn the mapping from the 3D world to the 2D image without specifying the 
camera models [12] [7], as an additional stage to improve the performance of other 
existing techniques [9, 8], or to approximate an imaging process of camera, i.e. the 
camera representation. In [11], the author developed carefully designed neural 
network structure so that each weight has its own physical meaning during the 
training. The physical meaning of the weight of neural network is correlated to 
camera parameters value. It has more robust approach than the previous mentioned 
work, but still it gives no considerable advantage over the standard camera calibration 
procedure.  

In the next section, we proposed a method to use neural network to create a camera 
representation that is used to solve a visual registration problem. The Multi Layer 
Perceptron(MLP) is used only to deal for what is intended to do which is to 
approximate a non-linear function. The function is carefully chosen so that the 
universal approximation capability of  MLP can be maximaly utilized over all 
possible data regions. The proposed method is highly scalable, reliable and robust. 

3  Proposed Framework 

Fig. 1 (a) illustrates the typical setup of a tabletop application. It consists of one (or 
more) projector(s) and one (or more) camera(s) for tracking users’  interactions (e.g. 
for tracking a laser pointer interaction). The interaction range and space of the 
application is usually limited due to the resolution of the projectors. Most applications 
limit the interaction to a 2D interaction. Fig. 1 (b) shows the transformations between 
the spaces in a typical tabletop application. Let C Ì ´� �  to be the camera image 
space, M Ì ´� �  to be the application image space, 3W Ì �  to be the world space, 
and 2S Ì �  to be the 2D virtual interaction surface. 

Let :f C M® denotes the mapping that maps a pixel in the virtual interaction 

surface to the corresponding pixels in the camera image; :1f M C- ® denotes the 
mapping that maps a pixel in the camera image to the corresponding pixels in the 
virtual interaction surface.  The mapping { }, ,g h i  and its inverse are the usual 

transformation between the respective spaces. 
One of the promising features of a tabletop application is, however, that the 

interaction surface usually comprises an overlapping of the input and the output 
interaction space. Thus in this case, the interaction can be defined directly inside M  
and be detected visually by the camera inC . Consequently, what we need to 
implement for the interaction is only the calculation of the mappings { f, f -1}  (cf. Fig. 
1(b)).  

Before having a discussion over the main algorithm of our approach, it is common 
in general practice of computer vision system, especially in tabletop application to 
have an indication whether a pixel in camera is part of interaction surfaces. This 
indication is called “screenmask” .  Additionally, when we deal with multi-camera 
setup, we also need quantities that can be compared from one camera to the other for 
the same interaction surfaces. The quantity represent a kind of camera confidence 
function. A camera confidence function is a function that gives indication on how 



 

good the camera tracks a point in the considered surface in comparison to other 
camera. 
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(a) (b) 

Fig. 1. The setup of the Office of Tomorrow project1; (a) Usually the tabletop setup consists of 
multiple projectors and multiple cameras; (b) Transformation between spaces in tabletop 

application. 

Hence, we have noticed that the proposed camera calibration method needs to 
compute: (1) a function ( )s x  to specify whether the points in the camera image space 
are part of the interaction surface image, (2) mappings { f, f -1} , and (3) a function 

( )xd   to specify the degree of confidence of the mappings in specific points in the 
camera setup relatives to the other camera. 

3.1 Screenmask Generation 

Often we want to limit the processing only to the region that is really needed. For this 
reason, we need an indicator on whether a pixel is part of the region or not. In 
common tabletop applications with a 2D interaction space, it is useful to limit only to 
the region under consideration since it will preserve the computing power and limit 
the possible of interference from the surrounding environment.   

Let [ ]( ) : ,0 1s x ´ ® Î� � �  indicate whether the point x  is in the region which 

defines an interaction surface, J CÌ . It is defined as 
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Fig. 2.  The automation of the Screenmask generation. 

 
We generate the function ( )s x  by using the ability to control what is projected 

onto the surface. As depicted in Fig. 2, we firstly project a black image and capture it 
as a background image for the reference image. Secondly, we reduce the noise and 
increase the contrast.  Next, we project a white image onto the surface and capture it 
again (a), followed by a conversion to a grey colored image and a threshold operation 
which is applied to the image (b). The next operation is the segmentation operation 
based on white color (c). Since we usually place manually the camera, the surface can 
be seen as dominant as possible in the camera image space. 

The result represents the screenmask. The corresponding matrix representation is a 
popular representation due to its simplicity although it takes a huge chunk of memory 
and there are other possibilities to be used, e.g. a neural network classifying function. 
The availability of screenmask will also help in generating data sample for calibration 
of the mapping { f, f -1}  by minimizing interference from environment, especially in 
the automatic setup. 

3.2 Neural Network based Function Approximation 

Universal approximation is a nice property a of multilayer perceptron (MLP) 
neural network that has a unique feature to the universality of approximation using a 
standard fixed mathematical model such as polynomial approximation. The most 
important difference of the approximation function using neural network is that they 
are better able to cope with the curse of dimensionality in the sense that the 
approximation error becomes independent of the dimension of the input space (under 
certain conditions), which is not the case for polynomial expansions. The 
approximation error for MLPs with one hidden layer is of order of magnitude O(1/nh), 
compared to O(1/np

2/n) for polynomial expansions, where nh denotes the number of 
hidden units, n the dimension of the input space and np the number of terms in the 



 

expansion. A model that is based on MLPs can handle larger dimensional input 
spaces than polynomial expansions. 

One of the common problems of using MLPs is the problem to decide the number 
of units in hidden layer. Although it has been proven that neural network with one 
hidden layer is in fact a universal approximator, the number of neuron unit in hidden 
layer that is needed is dependent on the smoothness properties of the function 
approximated and the desired error of approximation. Maiorov et al. show in [13] that 
any continuous function on the unit cube in d� can be uniformly approximated to 
within any error by two hidden layer MLP with 3d units in the first hidden layer and 
6d + 3 units in the second hidden layer. Hence, we are using a four-layer with a six 
neurons unit in the first hidden layer, and fifteen units in the second hidden layer with 
the hope that it will maximize the use of sigmoid activation function.  

Hence, having the calibration data, the mapping f can be generated by applying the 
backpropagation algorithm to the neural-network. Moreover, with the same 
calibration data (only with different order), the inverse mapping f -1 can be generated 
with the same function structure as the neural network for the mapping f.  

3.4 System Calibration 
The Sample data that is needed to be generated is a set of pair interaction surface 

image point ( , )s sx y  and its corresponding camera image point ( , )c cx y . Since we can 

control which image has to be projected, we can generate the calibration image by 
putting a special designed calibration image to the interaction surface, detect it by the 
camera and calculate the corresponding camera image points. 

 

 

 

(a) (b) 
 

Fig. 3. (a) Vision algorithm for sample data gathering; (b) Example of a calibration 
scene and the accuracy of the neural network approximation. 



 

Moreover, by using the above techniques, the sample data density will change 
according to the degree of importance. The near region, since it has more accurate 
reading, only needs more sparse data. The far region of the interaction surface will 
generate more sample data. A region with more spatial dynamic will generate data 
according to the bumpiness of the region. 

For the calibration, we use the usual dot pattern as depicted in Fig. 3(a). We use the 
same algorithm as it has been used for creating the screenmask to detect the dots (cf. 
Fig 2). After the dots are detected, we simply calculate the center of each dot by 
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where ( , )sc scx y   is the center point of each dot segment, g  is the size of the segment 

in pixel values and ( , )si six y  pixel position of i th segment member. 

4 Implementation &  Exper imental Result 

We implemented the neural network by using the open-source FANN neural network 
library [14]. In the experiment, we were using a desktop PC with 3 GHz, Pentium IV, 
for the projection we used a single-projector setup with a resolution of 1024 x 768 
pixels. The typical learning time for a calibration image with 20 pixels radius dot was 
computed in around 117 seconds. In this case, we used the MPL network with in total 
21 neurons in two hidden layers.  

Fig. 3(b) illustrates the accuracy of the MLP-based mappings implementation. The 
red dots represent the sample data generated for learning, and the blue dots represent 
an approximation achieved by the neural network. Notice that the right part of the 
camera space is naturally a region with better accuracy, and the left part is considered 
lower. It is shown that the region with lowest accuracy expectation, i.e. image region 
of far top of the computer screen can be well approximated despite the limited amount 
of camera image pixels. 

4.1 Automatic Calibration Algor ithm 

We automate the calibration process by using the same algorithm as the manual 
calibration model. In contrast, we project the individual dots one-by-one to the 
surface and apply the algorithm to each image. A delay is needed between the 
projection of a single dot on the surface and the capturing of the camera to grab the 
dot image. In our setup using a 3 GHz Pentium IV PC with a USB camera, we used a 
frequency of 0.5 seconds to project one dot image after the other.  

Notice that in our system, we use various number of dots based on its size. Smaller 
dots give more sample data with the expense of processing time. The typical setup is 
20 pixels radius dot. Using an interaction surface with a resolution of 1024 x 768 
results 540 dots, thus it took about 270 seconds for the automatic projection of the 
entire dot pattern. Unfortunately, we cannot project more than one dot images at a 



 

time to the surface, since we cannot differentiate which dot in the camera image 
surface corresponds to the dot in the calibration image. This feature gives the system 
high flexibilities that the camera does not need to see any additional cue with a special 
feature. 

4.2 Exper imental Result 

We developed a demo-application that tracks the movements of a laser pointer [15]. 
In this demo the users can manipulate the cursor by moving a red laser pointer. We 
used two different combinations of camera-interaction surfaces, a planar (cf. Fig. 
4(a)) and non-planar (cf. Fig. 4(b)) surface, and two cameras with different properties, 
i.e. a low-end USB webcam (640x480 pixels) and a firewire Imaging Source camera 
with a resolution of 1024x768 pixels and a Fujinon fisheye lens with 180° field of 
view. The non-planar surface is basically beyond the intended design which is a 
smooth and continuous surface. It contains a discontinuity and sharp edges. These 
direct usages of the mapping f showed interesting mapping accuracy of the approach.  
 

  
(a) (b) 

  
(c) (d) 

Fig. 4. In the demo-application, we used a planar wall surface (a), a distorted 
environment (b), a non-expensive USB webcam (c), and a firewire camera with 

fisheye-lens with 180° (d). 
 
Fig. 5 depicts the accuracy results. The blue dots represent a calibration dot in the 

application image space. The red dots represent the approximation accuracy. The 
image (a) presents the accuracy by using a USB camera with no special lens and the 
planar surface of Figure 5 (a). Notice that the red dots are neatly overlapped by the 
blue dots. Figure (b) depicts the accuracy of the USB camera on the non-planar 
surface of Figure 5 (b). Again, the approximation is practically similar. It is only a 



 

little bit off in the far left region of the surface, which is a normal since we stretched 
the application surface to such a distortion. 

 

    
(a) (b) (c) (d) 

Fig. 5. Approximation accuracy for planar & distorted environment on wall surface 
with normal camera (a) and (b), fisheye lens (c) and (d). 

 

6. Multi Camera Setup in 2D Interaction Sur face 

One of the main problems in the setup of the system with more than one camera is on 
how to manage simultaneous cameras with different parameters. Considering 
Equation 2 which shows the quantity g , i.e. the size of a dot segment. In our 
approach, this quantity can be a good basis to develop the third estimate, ( )x¶ .  The 
apparent size of the dot by the camera consistently indicates how good the estimation 
by mapping f will be. Bigger dot sizes, which are related to closer distance between 
the points to the camera, give more degree of confidence to the estimation result. This 
g  value for each of the camera that is looking at the same point in the system gives a 
kind of probability function of estimate of that point for each camera.  

Let ( )i ip¶  denote for camera-i degree of confidence g  for a calculated point 

( )i ip f x=  with x  is a detected camera image pixel by camera-i. A probability for the 

point n  is given by 
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Hence, like the mapping f for each camera, the degree of confident function ( )x¶  is 
also presented by the neural network based approximation function, which results in a 
smooth representation function over C . Notice that the neural network has the same 
structure of mapping f . 

Given the probability function ( )i ip¶   denotes for camera-i degree of confidence 

g  for a calculated point ( )i ip f x=  with x   is a detected camera image pixel by 

camera-i. The best estimates for x  is x̂  will be  
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Additionally, to coup with various possible camera resolutions, we can start with 
the idea by considering the fact that the camera with a lower resolution has a lower 
degree of confidence than the camera with higher resolution with the factor as the 
ratio of the size of each camera image area.  Let resolution for camera-i is specified 
by the parameter /i width height kz = ´ , where k is a user-specific scaling factor.  

Given the probability function ( )i ip¶  denotes the degree of confidence g  for a 

calculated point ( )i ip f x=  for camera-i with x  is a detected camera image pixel by 

camera-i, the best estimates for x  is x̂  can be given by 
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6. Discussion 

Although the above technique is designed specifically to solve the registration 
problem on the 2D interaction surface, it has been found that it can directly be used 
for solving the 2D object augmentation problem. Having the knowledge of the 
geometry of the interaction surface and the pose of the camera relative to the 
interaction surface, another kind of visual based registration problem can also being 
solved. Even the development of stereo camera pair can be done with the degree of 
complexity as simple as the complexity of the setup for one camera. 

 Suppose we have a 2D object, such as a 2D image, a texture or video images etc., 
and it is defined in the virtual interaction surface M. By using directly inverse 
mapping f -1, we can simulate the imaging process of the camera which put the 2D 
object inside camera image space C as seems as the 2D object is lied in the physical 
surface S. Fig. 6(a) illustrates the augmentation achieved for 2D texture into 
environment scenes. It is illustrated in that the original scene can be altered by 
augmentation of a 2D object into the image of the original scene with correct 
perspective. Notice that the screen monitor is not a planar surface and the 
augmentation also shows such quality. The ability to be used for tracking accurately 
and augmenting 2D object for more wide class physical surface is one of the strength 
of the proposed method over the standard method.  

A fiducial marker based applications is a popular augmented reality application. To 
be useful, the proposed framework should be able to do the same. Knowing the 
geometry of the interaction surface and the pose of the camera relative to the 
interaction surface means that we have a knowledge of set of mapping { }, ,f g i . 

Hence, we can use that knowledge to implement the 3D object augmentation like 
Magic Book. Fig. 6(b) illustrates the implementation of the proposed method for 
solving a 3D object augmentation problem. 

Having a similar setup like the 3D object augmentation problem above for two 
cameras with fixed position to each other, the stereo camera pair equation can be 
generated instantly. Fig. 6(c) shows the stereo camera pair that we have used and Fig. 
6(d) illustrates experiment range data of a plane for the stereo camera pair. 



 

 

 
 

(a) (b) 

  
(c) (d) 

 
Fig. 6. The example of extensions of the proposed method; (a) 2D object 

augmentation problem; (b) 3D object augmentation problem; (c) The camera pair for 
stereo camera experimentation; (d) Experimental data from points of a plane are seen 

by the stereo camera pair. 

7. Conclusion &  Future Work 

The proposed framework gives a straight-forward solution to generate mapping 
between camera image space and interaction surface and still able to capture the 
spatial dynamic of the surfaces. Moreover, the technique gives a basis to create simple 
setup to manage the system with a multi-camera setup, especially for the future 
tabletop application where more than one projectors and cameras are needed. 
However, implementation of the technique into various applications is still needed to 
understand the complete behavior of the proposed method. 

In theory, the neural network approximation error can be minimized arbitrarily 
small. This allows developers to focus more on computer vision algorithm which can 
produce good visual cue detection with small error detection, rather than fighting with 
calibration errors.  Nevertheless, more thorough analysis and experimentation need to 



 

be made to gain complete understanding the comparative advantage in the accuracy 
gain by the proposed technique over the standard method for various scenarios.  
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