
ART 02

1

Combining ARToolKit with Scene Graph Libraries

Michael Haller Werner Hartmann Thomas Luckeneder Jürgen Zauner
University of Applied Science

at Hagenberg (MTD)
haller@fh-hagenberg.at

Institute for Applied
Knowledge Processing (FAW),

University of Linz
hartmann@faw.uni-linz.ac.at

Institute for Applied
Knowledge Processing (FAW),

University of Linz
luckeneder@faw.uni-linz.ac.at

University of Applied Science
at Hagenberg (MTD

jzauner@fh-hagenberg.at

1. Introduction

Many Augmented and Mixed Reality applications are based on
two libraries: OpenGL is used for rendering and ARToolKit [1]
is used for marker recognition. The ARToolKit library is great
for rapid prototyping of AR/MR applications. The library is very
easy to use and it hides the complexity of marker recognition.

In the AMIRE [2] (Authoring Mixed Reality) project,
a European founded AR project, we follow up the aim of
ARToolKit consistently: the AMIRE approach is to offer well-
established gems (software solutions) and components for a
faster prototyping of AR/MR applications. Each content user
should be able to develop his/her own AR/MR application
without any computer graphics skills. Therefore, one of the
primary goals of AMIRE is to find well-established solutions of
current AR/MR applications. One of the solution is the
ARToolKit library, which is used in numberless AR/MR
applications. But which library should be used for rendering?
Can we use a high-level graphics API together with ARToolKit?
Which graphic library would be the best for further AR/MR
applications? Should developers use Direct3D/OpenGL or
should we propose a high-level graphics API, like Open
Inventor [5], OpenGL Performer [3], OpenSG [4], or Open
SceneGraph [6]?

High-level graphics APIs have a number of advantages as
opposed to low-level graphics APIs. They include:
�� A set of loaders (e.g. model and texture loaders)
�� A scenegraph concept
�� Modern object oriented design
�� High performance (optimized rendering, view frustum

culling, small object culling, Level of Detail nodes, etc.)

One problem still remains: How difficult is the usage of
ARToolKit, originally based on OpenGL, in combination with a
high-level graphics API like OpenSG?
For the AMIRE project we tested two different APIs: Open SG
and Open SceneGraph.

2. Integration in a Scene Graph Library

To integrate ARToolKit with a Scene Node Library at least the
following three tasks have to be performed:

• Initialising the Camera – ARToolKit delivers a
matrix that describes the intrinsic parameters of the
video camera. This matrix has to be applied to the
projection matrix of the virtual camera.

• Transforming the Object – The transformation
matrix that describes distance and orientation offset
between a marker and the camera must be applied to
the virtual object.

• Displaying the Video – The video image has to be
applied to the rendered image as background.

To improve the quality of the integration work, also the
following can be considered:

• “Real Occluders” – It is often desired that real
objects should occlude virtual ones to get a more
realistic application. To enable this, rudimentary
models of the real environment have to be built. These
models can be used to modify the depth information of
the rendering system to generate occlusion effects.

3. Implementation

3.1. Video and Tracking Abstraction Layer

To make the integration of ARToolKit into high-level graphics
frameworks as OpenSG and Open SceneGraph as easy as
possible we have decided to create an object-oriented
abstraction of video capturing and object tracking functionality.
We have used this abstraction layer only to integrate the object
tracking and overlaying of live video images into the high-level
framework. So, the integration of different tracking technologies
is minimised to the implementation of a specific subclass. In our
case we have integrated the ARToolKit video capturing, object
recognition and tracking abilities.

3.2. OpenSG experience

OpenSG is a library that provides multi-threading safety. This
makes it easy to use this library in a multi-thread environment.
But it also complicates it to extend and modify this library.
Every OpenSG node class is derived from a FieldContainer class
and has one or more Fields. These Fields contain all data of a
Node. To build a new OpenSG node the Fields of this node have
to be described with a tool called fscEdit. This tool generates an
XML description and source code to manage the Fields of the
node. The generated source code has to be combined with the
source code that represents the functionality of the node. Thus,
it makes it very hard to extend OpenSG. For this reason we tried
to integrate ARToolKit into OpenSG without extending
OpenSG. The first integration step, “initialising the camera” was
fairly easy, because OpenSG provides a class called
MatrixCamera. This MatrixCamera contains two Matrix Fields,
one for the projection matrix and one for the modelview matrix.
Thus, setting the projection matrix of a MatrixCamera with the
projection matrix of ARToolKit initialized the OpenSG camera.
The next step, “transforming the object” was done by adding a
transformation node at the root of the scene graph and by filling
with the modelview matrix of ARToolKit. The visualization of

ART 02

2

the video was a little bit more difficult, because this necessitated
an extension of OpenSG. OpenSG uses so called background
objects to clear the screen before rendering. For displaying the
video we had to create a new background class that did not only
clear the screen, but it also displayed the video data. We called
that background “VideoWallBackground”. Due to the fact that a
background object does not need its own fields, the
implementation of this class was done without using fscEdit.
Figure 1 shows a virtual object that is rendered by OpenSG and
placed by ARToolKit. The realization of the “real occluders”
was done by first rendering the occluders, then clearing the
screen with the VideoWallBackground, (this overwrote the
screen with the videoimage, but preserved the depth
information) and finally drawing the virtual object. Figure 2
shows the effect of a real occlusion. Figure 3 depicts the real
occluder.

Figure 1: An OpenSG rendered disk, placed by

ARToolKit.

3.3. Open SceneGraph experience

Open SceneGraph is much easier to extend than OpenSG,
because OpenSG supports thread safety by creating copies of the
objects as opposed to Open SceneGraph. Open SceneGraph is
also very similar to OpenGL Performer [3], which is a
well-known high performance 3D rendering toolkit for
developers of real-time, multiprocessed, interactive graphics
applications. This similarity makes it much easier to understand
how Open SceneGraph works. We have extended the classes
GLUT viewer class to integrate the video capturing, object
tracking and overlaying into the display method of a MR viewer.
To provide occluding real objects we implemented a MR scene
view extending the scene view class of Open SceneGraph. First
we display the occluding geometry of the real objects, then we
overwrite the color buffer with the video image without

manipulating the depth buffer and at last we display the objects
recognized by our ARToolKit based object-tracker.

Figure 2 The virtual disk, partly occluded by the real

notebook.

Figure 3: Virtual substitute for real notebook.

4. References

[1] Kato H., Billinghurst M., Blanding B., May R., ARToolKit,
Technical Report, Hiroshima City University, December, 1999.
[2] http://www.amire.net
[3] http://www.sgi.com/developers/devtools/apis/performer.ht
ml
[4] http://www.opensg.org
[5] http://www.sgi.com/software/inventor
[6] http://www.openscenegraph.org

Partly occlusion
of virtual object

Occluder substitute
object for the real
notebook

