
Real-Time Painterly Rendering for MR Applications

Michael Haller ∗

Upper Austria University of Applied Sciences
Media Technology and Design, Austria

Daniel Sperl†

Upper Austria University of Applied Sciences
Media Technology and Design, Austria

Abstract

In this paper we describe a real-time system for AR/MR rendering
applications in a painterly style. Impressionistic images are created
using a large number of brush strokes, which are organized as 3d
particles to achieve frame-to-frame coherence. Reference pictures
are used to compute the properties of each stroke.

The presented technique is based on B. J. Meier’s “Painterly
Rendering for Animation”. We modified the algorithm of Meier
for real-time AR/MR environments by extensively using modern
3d hardware. Vertex and pixel shaders allow both the rendering of
thousands of brush strokes per frame and the correct application of
their properties. Direct rendering to textures allows rapid genera-
tion of reference pictures and assures great flexibility, since arbi-
trary rendering systems can be combined (e. g. painterly rendering
of toon shaded objects, etc.).

CR Categories: I.3.5 [Non Photorealistic Rendering]: Hardware
Accelerated Rendering—Painterly Rendering; H.5.1 [Information
Interfaces and Presentation]: Multimedia Information Systems—
Artificial, augmented, and virtual realities;

Keywords: Non-Photorealistic Rendering, Painterly Rendering,
Mixed Reality, Augmented Reality

1 Introduction

The main focus in computer graphics and consequently in MR/AR
applications has always been the rendering of photorealistic im-
agery. While a tremendous amount of research has been done in
this area, non-photorealistic rendering (NPR) is a relatively young
field of research. In many areas, a NPR approach can be more ef-
ficient than photorealism, since it can focus on the information to
be conveyed. Cartoon and painterly rendering have become very
important not only in game design [Ken-ichi Anjyo and Katsuaki
Hiramitsu 2003], but also in architecture [Freudenberg et al. 2001]
and even in medical applications [Feng Dong et al. 2003].

The user is not amazed if an object has a different (non realis-
tic) behavior - the artificial world has to be at least believable and
it must be more convincing. In addition, users expect a realistic
behavior if the world is rendered photo-realistic. When talking of
NPR applications, we think of more artistic environments. Non-
photorealistic pictures can be more effective at conveying informa-

∗e-mail: haller@fh-hagenberg.at
†e-mail:daniel.sperl@fh-hagenberg.at

tion, more expressive or more beautiful. Especially in AR, where
the superimposed objects are not part of the real world, the virtual
objects should be more convincing than realistic.

Durand describes in [Durand 2002] that the border between pho-
torealism and non-photorealism can be fuzzy and the notion of re-
alism itself is very complex. Another interesting conclusion of his
paper is that the virtual world has to be interpreted more convincing
rather than realistic. In other words: it is enough if the virtual, aug-
mented, not existing world, superficially looks real. It should be
a believable world. The augmented objects should be expressive,
clear, and look aesthetically perfect.

(a)

(b)

Figure 1: The traditional visitor has no interaction with the painting.
In contrast, the second figure shows an AR scenario of Van Gogh’s
bedroom.

What’s the main goal of an Augmented Reality application?

Administrator
label-graphite2004



While superimposing virtual objects onto the real picture, the ap-
plication wants to get the users’ attention. Especially when we ex-
periment with AR in everyday settings, the usability part of an AR
applications becomes very essential. How can we focus the atten-
tion of the user to the superimposed objects? How can we underline
the augmented objects?

In paintings, a scene represents an artist’s view of the world. All
the information he/she wants to convey with the painting has to be
assembled by strokes of a brush. The attributes of each stroke can
affect various characteristics of the painting. The size of a stroke
determines the maximal detail of an object, direction and color
describe the quality of the surface. By choosing different brush
strokes, a painter can emphasize the parts of the scene he/she con-
siders most important and create a certain mood and/or atmosphere.

Many algorithms have been developed in the last decade that
create images which resemble art made by humans [Gooch et al.
2002; Hertzmann and Perlin 2000]. Different art techniques and
styles can be simulated, such as pen and ink [Winkenbach and
Salesin 1994; Salisbury et al. 1994], hatching [Praun et al. 2001],
water color [Curtis et al. 1997] and impressionism [Haeberli 1990;
Meier 1996]. The fast progress of graphics hardware affordable
for consumers is allowing more and more of these algorithms to
be processed in real-time (e. g. [Kaplan et al. 2000; Lander 2000;
Markosian et al. 1997; Majumder and Gopi 2002]).

The system described in this paper allows the real-time creation
of impressionistic imagery in an AR environment using ARToolKit
[Kato et al. 1999]. One of our goals was to allow the real-time ren-
dering of a 3d scene in a painterly style. Imagine looking at the
Van Gogh’s bedroom painting including full interaction possibili-
ties. A painting where the user can choose the personal view and
where he/she can interact in real-time with the different 3d objects.
Figures 1 and 2 depict a future scenario of a possible museum’s ap-
plication, where the visitors don’t have a flat 2d impression of the
painting. In contrast, they get the possibility to immerse into the
painting. Moreover, in our application we support different NPR
rendering techniques, such as toon-rendering and painterly render-
ing.

In our application, each image is composed of thousands of brush
strokes with different attributes such as color, size, and orientation.
The system was designed with inter-frame coherence in mind, since
this is a basic requirement of animation. Extensive use of mod-
ern graphics hardware—in combination with several optimization
steps—allows a rendering speed suitable for real-time applications.

The main contributions of this paper are the following:

• Flexible creation of reference pictures: We created a
generic framework in which different renderers are avail-
able and can be chosen at run-time. The flexibility of the
framework allows a fast exchange of the renderer. Currently,
we support standard-, cartoon- and painterly rendering algo-
rithms. Those and any other arbitrary renderers can be used
for the reference pictures. If the algorithm renders shadows
or reflections, they will appear in the impressionistic image as
well.

• Brush strokes are computed on graphics hardware: The
attributes of each brush stroke are applied directly by the
programmable GPU (including reference picture look-up).
This reduces the impact on the CPU and allows thousands of
strokes to be rendered in each frame.

• Manual depth test eliminates need for depth-sorting the
particles: The depth buffer of the reference picture is used
to determine which particles are visible and need to be drawn.
This allows the strokes to be blended without a need for depth-
sorting.

(a)

(b)

(c)

Figure 2: Close-up of Van Gogh’s bedroom model rendered with
the painterly rendering algorithm using different strokes.



The vertex and pixel shaders are programmed using the high
level shading language Cg [Mark et al. 2003] [Fernando and Kil-
gard 2003]. Basically, a vertex shader (also known as vertex pro-
gram) is a program that is executed for each vertex of an object, and
can perform advanced lighting calculations or vertex transforma-
tions (e. g. the movement of waves in water). A pixel shader (also
known as fragment program) can be used to determine the color of
a pixel, since it is executed for each pixel of a polygon’s surface.
A common application for a fragment program is per-pixel-lighting
(e. g. dot3 bump mapping).

The results of the presented system are very promising. Al-
though not all aspects of the original (non real-time) painterly algo-
rithm were included, the rendered images provide an idea of what is
possible using this technique. With a few more optimization steps it
should be possible to utilize the presented technique in more com-
plex environments.

In the following section, we describe current painterly algo-
rithms and discuss related work. Our modified painterly rendering
algorithm is described in Section 3. In Section 4 we show the re-
sults including images rendered in real-time. Finally, in Section 5
we conclude with a summary of the presented techniques and future
work.

2 Related work

The presented system was inspired mostly by [Haeberli 1990] and
[Meier 1996]. Haeberli described a system for creating painterly
images by using brush strokes which obtain their attributes (po-
sition, color, size, etc.) from reference pictures containing photo-
graphic or rendered images. The use of reference pictures simpli-
fies the creation of artistic images and allows fast and direct control
of the process.

The brush strokes of Haeberli’s system are placed in screen
space, which is sufficient for still images but leads to a “shower
door” effect in animated sequences. In [Meier 1996], this problem
is addressed by using particles to control the placement of brush
strokes. The particles are rendered using 2D textures which are
first sorted by the distance to the user and then blended with each
other.

In photorealistic rendering, particle systems can be used to ren-
der complex natural phenomenons like water or fire using simple
geometric structures. In [Reeves and Blau 1985], particle systems
are used to create complex objects like trees. [Kaplan et al. 2000]
utilizes particle systems in a similar way to Meier, but uses so-
called geograftals instead of bitmaps to create brush strokes.

Meier’s system was already converted into a real-time system by
Drone et al. in [Drone et al. 2000]. This system is designed to
run even on older hardware without using vertex or pixel shaders.
Since most of the operations and the calculations are executed on
the CPU, the number of strokes is limited. In addition, the strokes
are depth sorted in each frame. Although this results in an excellent
image quality, it has additional impact on the rendering speed.

Our system extends [Meier 1996] and introduces several opti-
mizations to achieve a performance suitable for real-time applica-
tions. The amount of particles is dynamically changed to achieve an
optimal trade-off between screen coverage and rendering speed. In
addition, a manual depth test carried out by the graphics hardware
allows the brush strokes to be blended on the screen without depth-
sorting the particles. The transfer of a great deal of calculations
from the CPU to the GPU results in a higher speed than is accom-
plished in [Drone et al. 2000], while our user-defined creation of
reference pictures allows more flexibility.

3 The real-time painterly rendering algo-

rithm

Before we start in this section with the real-time painterly rendering
algorithm, we present Meier’s algorithm as shown as follows:

create particles to represent geometry

for each frame of animation

create reference pictures using geometry, surface

attributes, and lighting

transform particles based on animation parameters

sort particles by distance from viewpoint

for each particle, starting with furthest from camera

transform particle to screen space

determine brush stroke attributes from reference

pictures or particles and randomly

perturb them based on user-selected parameters

composite brush stroke into paint buffer

end (for each particle)

end (for each frame)

Our modified painterly algorithm can be divided into three steps:

1. Before we can start to render the scene, we need a preprocess-
ing step. The polygon meshes are converted into 3d particles.
The attributes of brush strokes that remain constant in each
frame can be computed simultaneously.

2. Next, the rendering can start and it takes at least two passes.
During the first pass, two reference images that contain color
and depth information are rendered and stored into textures.
An arbitrary rendering algorithm can be used.

3. In the second pass, an optimal amount of brush strokes is
rendered using billboards. Reference pictures from the first
pass are used to define color and visibility, while the surface
normal determines the orientation of each stroke. This is the
most expensive part of the rendering process, since a large
number of strokes needs to be processed.

The graphics-pipeline of the described system is shown in fig-
ure 3. It is an extended version of the pipeline presented in [Meier
1996]. The main differences are the optimization steps, namely the
visibility and depth tests, as well as the calculation of the optimal
number of particles.

In the following sections, we begin with a discussion of the pre-
processing step, followed by a description of the two rendering
passes.

3.1 Preprocessing

In the preprocessing step, the polygonal objects of the 3d scene are
used as a basis for creating particles. These particles will be used
later to position the brush strokes that compose the image.

All particles are placed within the polygons of the mesh. De-
pending on the area of the polygon and a user-defined value for
density, a certain number of particles is placed within each polygon.
In the described approach, we implemented a simple algorithm for
distributing the particles randomly onto the surface (cf. figure 4).

The number of particles represents the maximum that can be ren-
dered in the second pass. However, only a fraction of them will be
needed in an average frame. The actual number depends on the dis-
tance of the camera to each surface and the size of the brush strokes.
As we will see later, we can reduce the number of needed particles
immensely by blending the billboards with the original scene. This
means that we can significantly accelerate the preprocessing step by
carefully determining the density of the brush strokes. If the density
is too high, a tremendous amount of particles is created, which has
negative effects on performance and memory usage.



Figure 3: The pipeline of the painterly renderer.

Figure 4: The density of the particles is a key issue for the speed-up.

3.2 First pass

The polygon-meshes of the objects are not only needed for particle
placement, but also for the rendering of reference pictures. Two
images are created in the described system: one providing infor-
mation on color, the other about depth (examples can be seen in
figure 3). The images have to be created as efficiently as possible
and should be stored within textures to allow fast access during the
second pass. As described in [Kirk 2003], the use of textures allows
a very efficient solution for real-time rendering.

There are two possibilities to create these textures. One would be
to render the geometry into the frame- and depth-buffer (using com-
mon OpenGL-functions) and copy the content of these buffers into
textures. However, copying data is not very efficient. Therefore, we
used OpenGL extension functions that allow direct rendering to tex-
tures (including ARB render texture and WGL ARB pbuffer).
These extensions allow the creation of additional rendering con-

texts, and proved to be useful.
It would also be possible to determine the attributes of the brush

strokes directly during the rendering process (e. g. in the vertex pro-
gram). The advantage of using reference pictures, however, is the
high flexibility. In theory, any arbitrary shading technique could
be used in the first rendering pass. It does not matter whether nor-
mal Gouraud shading or a Cartoon shading approach is used. Even
shadows and reflections could be used and would consequently be
transfered directly to the brush strokes.

3.3 Second pass

The second rendering pass is the most expensive one. Thousands
of brush strokes have to be rendered simultaneously, which can be
accomplished by programming the graphics card directly (using the
vertex and fragment shaders), and by several other optimizations.

The final image is composed of a large amount of billboards
which represent the different strokes. The particles are grouped
within the polygons on which they were created. This turns out to
be helpful in several steps of this rendering pass.

3.3.1 Backface culling and clipping

Before the particles are rendered, typical optimization steps, such
as backface culling and clipping, should be performed. This can
save a lot of processing time. Normally, we could use OpenGL’s
glCullFace() function to achieve backface culling, but due to the
fact that only billboards are used, it would not have any effect in this
case. As described before, each billboard is attached to a (invisible)
polygon, and we know the position and orientation of this polygon.
Consequently, we can determine if a billboard has to be rendered or
not.



Figure 5: Different brush strokes used to render the paintings in this
paper.

Another speed increase could be achieved by clipping the bill-
boards outside the view frustum, but this has not been implemented
in the described prototype.

If all optimizations are executed with the polygons of the origi-
nal geometry, and only the particles of the polygons assumed to be
visible are drawn, the processing time can be reduced to a fraction
of the time without performance tuning.

3.3.2 Variation of particle density

In a real painting, small objects are drawn with few brush strokes.
The maximum level of detail is predetermined by the size of the
brush. The painterly renderer should resemble this behavior.

When using polygon meshes, automatic generation and modifi-
cation of the levels of detail can become a complex task. In contrast,
when using the painterly renderer this task becomes comparatively
easy. If we want to decrease the detail, we have to reduce the num-
ber of rendered strokes.

The required number of strokes per polygon is dependent on
three things:

• the size of the brush stroke,

• the area of the polygon in screen space, and

• the desired stroke-density.

If these values are known, the optimal number of strokes per
polygon can be calculated and used when the strokes are drawn.

While the size of each brush stroke and the desired density are
defined through the user’s input, the polygon’s area in the output
image has to be approximated. This can be accomplished by us-
ing the actual size of the polygon (in world space), its distance to
the viewer, and the angle between its normal-vector and the view-
vector.

The density is calculated in each frame and for each polygon.
Therefore, when the camera moves through the scene, the number
of particles smoothly changes to the appropriate amount.

3.3.3 Creation of billboards

Now, the vertex shader comes into play. Each brush stroke (cf.
figure 5) is represented by a textured billboard. The coordinates of
the billboard’s vertices could be created on the CPU and sent to the
graphics card, but it is faster to create the billboards directly on the
GPU. In order to accomplish this, the coordinate of the center of
the billboard (= the coordinate of the particle) is sent to the vertex
program four times, accompanied by the correct texture coordinates
needed for the brush texture. These two coordinates can be used—
in combination—to create each corner of the billboard. Since vertex
programs need the coordinate of the vertex in clip-space, the two
sets of coordinates have to be added together (in addition to adding
an offset and multiplying with the desired size).

Each billboard should always have the same size in screen space,
independent from the distance it is being viewed from. Using a
perspective view, an object that is further away from the viewer

is normally displayed smaller than a closer one. Internally, this
is accomplished by a perspective division. In this process, the x-
and y-coordinates of a vertex (in clip space) are divided by their
distance from the viewer. To compensate for this process, which
cannot be avoided presently, the affected coordinates are simply
multiplied with the same value in the vertex program, thus reversing
the division.

However, the process described above can lead to holes in the
surface of the objects if the camera is very close to a surface, be-
cause there may not have been enough particles created during the
preprocessing step. We compensated for this effect by re-enabling
the perspective division at exactly the distance when there are no
longer enough particles available anymore (cf. figure 6).

(a)

(b)

Figure 6: When there are too few particles available for a certain
perspective (a), the strokes are scaled proportionally (b).

3.3.4 Accessing reference textures

The color of each brush stroke is computed by accessing the color
reference picture. Figure 7 illustrates the process. For this purpose,
the screen space position of the particle is needed that describes the
coordinates (x/y) which are used to access the reference pictures.
The screen coordinates are calculated in the vertex program and
subsequently scaled and biased to be in the range that is needed for
texture access. The color of the reference image at that position is
then used as color for the billboard (and consequently for the brush
stroke, after multiplying with the brush texture).

If a slight color variation was stored when creating the particles,
it can also be added. This results in images that are more natural,
since the colors of a real painting are rarely mixed perfectly.

Figure 7: A reference texture is used to compute the color of each
brush stroke.



3.3.5 Depth test

Brush strokes generally are images with an alpha channel. There-
fore, the particles have to be rendered into the framebuffer using
a blending function. The problem is that in order to get a correct
image, blending needs the brush strokes to be drawn depth sorted,
beginning with the one that is furthest away from the viewer. Since
several thousand strokes have to be drawn, it is not advisable to do
that in real-time. Therefore, we had to find an alternative approach.

The solution is to draw only those brush strokes situated on sur-
faces that are visible in the present frame (even though the sur-
faces themselves are not rendered). Obscured strokes should not
be drawn at all. The visible particles can be determined by using
the depth reference image stored in the first rendering pass (the con-
tent of which is the depth-buffer of the first pass). The depth value
found in the reference texture is compared with the depth value of
the present billboard. If the billboard’s depth is smaller or equal
to the one found in the reference texture, it is drawn (as shown in
figure 8). Due to the fact that access to this texture is only granted
in the fragment program, this test has to be executed for every frag-
ment.

Figure 8: The depth test compares the z-values from the first pass
(zold) with the z-values of each billboard (znew).

The results of this depth test are not as accurate as those of depth
sorting, but if density and size of the strokes are well balanced, this
can hardly be noticed in the final image.

4 Results and Discussions

Figure 10 shows a still life that was rendered in real-time. In this
case the tests have been based in a non AR environment, because
the performance tests shouldn’t be influenced by the ARToolKit li-
brary. Approximately 50,000 brush strokes compose this image,
while in the preprocessing step, nearly 500,000 particles have been
created. This means that the camera can be placed very closely to
the objects before the brush strokes start to scale.

Table 1 shows three different scenes rendered in real-time. All
scenes are rendered on an ordinary PC with nVIDIA’s GeForce4
graphics card. Naturally, the framerate decreases with the number
of particles in the scene. The tests included three different sce-
narios. We show three different quality levels with a minimum, a
medium and a maximum quality - depending on the amount of re-
sulting billboards.

• The first scenario shows the Venus model with 5,500 polygons
and 825,912 possible particles.

• The second and third scenarios show a still life model with
4,400 polygons polygons and 547,860 possible particles.

Of course, the best performance results are achieved by using
fewer billboards (approximately 10,000 billboards are no problem

at all). Notice that by using a Pentium 4 with 2.4 GHz and a
GeForce4 Ti 4600, a scene with about 58,000 particles results in
an interactive rate of 36.6 frames per second, while even very com-
plex scenes with about 100,000 particles were still rendered with
more than 8 frames per second.

The number of required particles can be reduced tremendously
if the reference color image (rendered in the first pass) is drawn
as background image behind the brush strokes. In this case, the
particle density can be lower than it normally is and the background
shines through without being noticed.

Figure 10 and 11 depict the still life and other models using
different brush strokes.

One problem of our algorithm can be recognized at the edges of
an object and/or when an object is animated. In this case, some
particles are popping on and of as they become visible and invisi-
ble. A possible solution that the particles shouldn’t be created and
eliminated quickly but they could be faded in/out more smoothly.

Besides the performance tests, our painterly algorithm got good
feedback from the users, because theyw liked the idea of combin-
ing a painterly renderer with AR. NPR makes sense in AR, because
the overlapped objects are indirectly emphasized. Of course, some-
times the non-realistic approach and the non perfect rendering style
shouldn’t influence the overall picture of the scene, but in general,
NPR makes good pictures in an AR environment.

5 Future Work and Conclusion

We have presented a technique for rendering real-time AR images
in a painterly style (cf. figure 9).

Through extensive use of modern graphics hardware, the process
is fast enough to be applicable in real-time environments. The sys-
tem provides automatic variation of particle density and eliminates
the need of depth-sorting the particles by accessing the depth buffer
of the first rendering pass. By allowing arbitrary rendering algo-
rithms that are used for the creation of a reference image, a variety
of different painterly styles can be achieved.

A problem can be observed when the brush strokes are relatively
large. Since the brush strokes are not depth-sorted, it can happen
that small details of an object are obscured by adjacent strokes.
This can be avoided, however, if the brush size and particle den-
sity are chosen carefully. For a maximum of artistic freedom, the
user should be allowed to choose some basic brush attributes per
object or even per polygon.

The biggest challenge is to reduce the amount of memory used
by the algorithm. If the painterly renderer, as described above, is
used for very complex scenes (e. g. the extensive environments of
modern computer games), the number of particles that are created
in the preprocessing step is far too high. A solution for this problem
would be to create only those particles during preprocessing which
are needed for the first frame of animation. All other particles could
be created in real-time during the rendering (while those no longer
needed could be deleted simultaneously). If it is assured that the
camera only moves in small steps, i.e. direct jumps from one point
to another are not possible, the number of new particles per frame
would be small enough to allow on-the-fly creation.

Non-photorealistic rendering techniques (as depicted in figure 9)
can be used for achieving artistic effects. Of course, it depends
on the type of the applications and each AR application has its do-
main focus - consequently, we have different end users and different
goals that require different rendering techniques. Finally, we have
seen that in AR, the user should immediately be confronted with the
abstract model - in fact, with the superimposed, augmented object.
Therefore, a painterly rendered object could be a good solution.



(a)

(b)

Figure 9: A sculpture in an AR environment using a cartoon ren-
derer and the painterly renderer.

References

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K. W., AND
SALESIN, D. H. 1997. Computer-generated watercolor. In Proceedings
of SIGGRAPH 97, 421–430.

DRONE, S., KRISHNAMACHARI, P., LAPAN, D., MICHAELS, J.,
SCHMIDT, D., AND SMITH, P. 2000. Project aember: Real-time
painterly rendering of 3d scenery. Tech. rep., UIUC ACM SIGGRAPH,
August.

DURAND, F. 2002. An invitation to discuss computer depiction. In Pro-
ceedings of the second international symposium on Non-photorealistic
animation and rendering, ACM Press, 111–124.

FENG DONG, GORDON J. CLAPWORTHY, HAI LIN, AND MELEAGROS
A. KROKOS. 2003. Nonphotorealistic Rendering of Medical Volume
Data. IEEE Computer Graphics and Applications 23, 4 (July/August),
44–52.

FERNANDO, R., AND KILGARD, M. J. 2003. Cg Tutorial, The: The Defini-
tive Guide to Programmable Real-Time Graphics. Addison-Wesley.

FREUDENBERG, B., MASUCH, M., ROEBER, N., AND STROTHOTTE, T.
2001. The Computer-Visualistik-Raum: Veritable and Inexpensive Pre-
sentation of a Virtual Reconstruction. In In Proceedings VAST 2001:
Virtual Reality, Archaelogy, and Cultural Heritage, 97–102.

GOOCH, B., COOMBE, G., AND SHIRLEY, P. 2002. Artistic vision:
painterly rendering using computer vision techniques. In Proceedings
of the second international symposium on Non-photorealistic animation
and rendering, ACM Press, 83–ff.

HAEBERLI, P. E. 1990. Paint by numbers: Abstract image representations.
In Proceedings of SIGGRAPH 90, 207–214.

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering for video
and interaction. In Proceedings of the first international symposium on
Non-photorealistic animation and rendering, ACM Press, 7–12.

KAPLAN, M., GOOCH, B., AND COHEN, E. 2000. Interactive artistic
rendering. In Proceedings of the first international symposium on Non-
photorealistic animation and rendering, ACM Press, 67–74.

KATO, H., BILLINGHURST, M., BLANDING, B., AND MAY, R. 1999.
ARToolKit.

KEN-ICHI ANJYO, AND KATSUAKI HIRAMITSU. 2003. Stylized High-
lights for Cartoon Rendering and Animation. IEEE Computer Graphics
and Applications 23, 4 (July/August), 54–61.

KIRK, D. 2003. Cg Toolkit - User’s Manual, Release 1.1, 1 ed. nVIDIA
Corporation, March.

LANDER, J. 2000. Shades of disney: Opaquing a 3d world. Game Devel-
opers Magazine (March).

MAJUMDER, A., AND GOPI, M. 2002. Hardware accelerated real time
charcoal rendering. In Proceedings of the second international sympo-
sium on Non-photorealistic animation and rendering, ACM Press, 59–
66.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD, M. J.
2003. Cg: A system for programming graphics hardware in a c-like
language. In Proceedings of SIGGRAPH 2003, 896–907.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,
GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealis-
tic rendering. In Proceedings of SIGGRAPH 97, 415–420.

MEIER, B. J. 1996. Painterly rendering for animation. In Proceedings of
SIGGRAPH 96, 477–484.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-
time hatching. In Proceedings of SIGGRAPH 2001, 581.

REEVES, W. T., AND BLAU, R. 1985. Approximate and probabilistic al-
gorithms for shading and rendering structured particle systems. In SIG-
GRAPH 85 Proceedings.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND SALESIN,
D. H. 1994. Interactive pen-and-ink illustration. In Proceedings of
SIGGRAPH 94, 101–108.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-generated pen-
and-ink illustration. In Proceedings of SIGGRAPH 94, 91–100.



(a) The still life with the different reference images: the upper left figure
shows the brush texture, the bottom left figure shows the normal rendered
scene, and finally the bottom right figure shows the depth map of the scene.

(b) Stroke brushes without the background image.

(c) Different brush textures yield in different artistic styles. (d) Orienting the brush strokes in dependence of the surface normal can lead
to a realistic painting effect.

(e) This brush stroke shows in a very impressive way the usage of the parti-
cles.

(f) A close up of the scene.

Figure 10: The still life using different brush strokes rendered in real-time.



Scene A B C

Particles (Preprocessing) 825 912 547 860 547 860
Particles (Quality: Minimum) 2 610 5 657 24 978
Particles (Quality: Medium) 4 784 19 922 99 799
Particles (Quality: Maximum) 14 563 58 797 220 441

Scene A Scene B Scene C
Min. Med. Max. Min. Med. Max. Min. Med. Max.

AMD Athlon 550,
448 MB SD-RAM, 47,2 36,1 17,2 36,5 13,3 5,3 11,7 3,2 1,5
GeForce4 Ti 4200
Intel P4 1,8 GHz,
786 MB DDR-RAM, >85,0 55,7 28,5 52,6 25,1 9,7 21,3 6,1 2,8
GeForce4 Ti 4600
Intel P4 2,5 GHz,
1 GB DDR-RAM, >75,0 >75,0 37,6 >75,0 36,6 14,5 25,1 8,5 4,2
GeForce4 Ti 4600

Table 1: The performance of the painterly prototype (in fps) on different systems.

(a) Gouraud shading (b) Toon shading (c) Toon shading with outline

Figure 11: The rendering style of the reference pictures (left) has direct influence on the resulting images (right).


