A Loose and Sketchy Approach in a Mediated Reality Environment

Michael Haller* Florian Landerl"
Media Technology and Design
Upper Austria University of Applied Sciences

Mark Billinghurst*
HITLabNZ
University of Canterbury

Figure 1: A traditional rendered AR scenario (a) and the NPR rendered scenario (b), (c).

Abstract

In this paper, we present sketchy-ar-us, a modified, real-time ver-
sion of the Loose and Sketchy algorithm used to render graphics in
an AR environment. The primary challenge was to modify the orig-
inal algorithm to produce a NPR effect at interactive frame rate. Our
algorithm renders moderately complex scenes at multiple frames
per second. Equipped with a handheld visor, visitors can see the
real environment overlaid with virtual objects with both the real
and virtual content rendered in a non-photorealistic style.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation— [1.3.5]: Non Photorealistic Rendering—Hardware
Accelerated Rendering H.5.1 [Information Interfaces and Presen-
tation]: Multimedia Information Systems—Aurtificial, augmented,
and virtual realities

Keywords: Mediated Reality, Non-photorealistic rendering,
Loose and Sketchy

1 Introduction

In recent years, non-photorealistic rendering (NPR) has become
a popular research topic in the area of computer graphics. Aug-
mented Reality applications are those in which computer graphics
are overlaid in real time on views of the real world. In Augmented
Reality (AR) installations, there are two alternatives for rendering
the superimposed 3D content: either using photorealistic rendering
techniques with the goal of seamlessly integrating the augmented

*e-mail:haller @fh-hagenberg.at
fe-mail:florian.landerl @fh-hagenberg.at
*e-mail:mark.billinghurst@hitlabnz.org

content into the existing real environment, or using an NPR style
to enhance the augmented content. In the last decade AR research
has mostly been focused on improving photorealistic rendering, in-
cluding consistent illumination, integrating shadows and enhancing
shading by BRDFs etc. [Agusanto et al. 2003; Bimber et al. 2003;
Gibson et al. 2003; Haller et al. 2003; Naemura et al. 2002; Sugano
et al. 2003]. However there may be other ways to make AR instal-
lations more visually appealing and fun. Recently there has been
new research trying to making AR installations more stylistically
believable, and/or more enjoyable, than photorealistic.

Ferwerda [Ferwerda 2003] distinguished three different varieties of
realism:

e physical realism, where the virtual objects provide the same
visual simulation as the real scene.

e photorealism, where the image produces the same visual re-
sponse as the scene, and

e functional realism, in which the image provides the same vi-
sual information as the scene.

In this paper, we focus on aspects of photorealism (non-
photorealism) in AR interfaces and leave addressing physical re-
alism (non-realism) and functional realism (non-realism) for later
work. There are a lot of good reasons to improve the realism of aug-
mented reality imagery [Haller 2004]. Currently it is challenging to
create a seamless (not discontinuous) coherence between the real
and the virtual world: for example, light sources have to influence
the augmented content in the same way as they affect real objects,
including casting virtual shadows to match real shadows. Gogolin
predicts that sooner or later, photorealism research will start de-
veloping very new rendering techniques [Gogolin 2004]. Durand
[Durand 2002] demonstrates that the border between photorealism
and non-photorealism can be fuzzy and the idea of realism itself can
become very complex. The virtual world has to be interpreted more
convincingly rather than realistically rendered. In fact, it should be
a believable world, where the augmented objects should be expres-
sive, clear, and look aesthetically perfect.

The goal of this work is to achieve a more stylistic and artistic AR
visualization (cf. figure 2).

The main contributions of this paper are twofold:

Nov. 29 - Dec. 2, 2005, Dunedin, New Zealand.

In 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Graphite 2005,

Administrator
label-graphite2005

Figure 2: sketchy-ar-us in use: the embedded snapshot shows the
view of what the users would see through the handheld visor.

Implementation of a real-time version of the Loose and Sketchy
algorithm using programmable GPU hardware. Curtis’ orig-
inal algorithm was primarily designed for offline rendering,
where the performance played a secondary role. Thus, it took
10-60 seconds to render each frame [?].

Combination with an AR environment: Both the real and the
virtual objects are rendered in the same sketchy style. Due
to the blurred image and the sketchy silhouette style, users
cannot differ between the real and the virtual, augmented ob-
jects. Consequently, they get a better immersive experience
and a more enjoyable stylistic view.

After an overview of related work, described in section 2, we
demonstrate our approach, the modified Loose and Sketchy algo-
rithm, including the creation of the silhouettes, the blurring of the
image, its composition, and the combination with the AR setup.
Performance tests and user feedback comments are discussed in
section 5. Finally, we conclude the paper with directions for fu-
ture work.

2 Related Work

Our work is based on elements of Mediated Reality, as introduced
by Steve Mann [Mann and Fung 2001; Mann 1994]. In contrast
to Augmented Reality, in a Mediated Reality interface virtual con-
tent is not just added to the real environment, but modified by a
visual filter. Grasset et al. [Grasset et al. 2003] demonstrate an
application where they allow a user to paint virtually onto a real
environment. In this paper, we present sketchy-ar-us (cf. figure 1),
a modified, real-time version of the Loose and Sketchy algorithm
presented by Curtis [?] used to render an AR environment using
ARToolKit [Kato et al. 1999].

Sketchy-ar-us presents a non photorealistic view of the AR scene
using non-photorealistic rendering (NPR). There are several rea-
sons why NPR images may be better for some applications: the
pictures are easy to understand, they are easy to display, and they do
not need a huge amount of data [Raskar et al. 2004]. A hand-drawn
sketch can often communicate complex coherences in a better way
than photorealistic pictures. Sketchy (un-completed) drawings need
users to mentally complete the picture and add missing details. Mc-
Cloud describes in [McCloud 1994] that scenarios can be expressed

easier by using a simple, comic style.

A general overview of different NPR algorithms are given by
[Gooch and Gooch 2001; Strothotte and Schlechtweg 2002]. Many
algorithms have been developed in the last decade that create im-
ages which resemble art made by humans [Gooch et al. 2002;
Hertzmann and Perlin 2000]. Different art techniques and styles can
be simulated, such as pen and ink [Salisbury et al. 1994], hatching
[Praun et al. 2001], water color [Curtis et al. 1997] and impression-
ism [Haeberli 1990; Meier 1996].

Although NPR techniques are becoming more common, there has
been little research conduced into combining AR content with novel
rendering techniques. In [Haller and Sperl 2004] we presented a
non-photorealistic renderer in an AR environment, where only the
virtual objects have been rendered in a painterly style. Fischer et
al. [Fischer et al. 2005] postulate a cartoon-like AR environment,
where both the virtual and the real objects are rendered in the same
style. Their approach is based on a bilateral image filtering for
the color segmentation and a Canny-edge-detector for the silhouette
generation. Their work motivated us to combine the Loose and
Sketchy algorithm with an AR setup to achieve a more stylistic and
artistic environment.

Another example of how the AR content can be enriched by NPR
objects is presented by Collomosse et al. [Collomosse et al. 2003a;
Collomosse et al. 2003b], who postulate that an abstract illustration
of motion also makes sense for real movie sequences. In their work,
they enhance the motion in movies by adding motion lines or de-
forming real objects so that they seem to be moving quickly. Their
movies are impressive and convincing, although their techniques
require extensive pre-processing.

Our Loose and Sketchy algorithm consists of three different steps:
finding the silhouette by using reference images, blurring the image
to achieve a more fuzzy image, and adding paper texture to produce
a more stylistic image. A lot of different algorithms have been pub-
lished for the generation of silhouettes [Saito and Takahashi 1990;
Card and Mitchell 2002; Raskar and Cohen 1999; Northrup and
Markosian 2000]. Kowalski et al. [Kowalski et al. 1999] demon-
strate a novel silhouette rendering technique to achieve an art-based
rendering of fur, grass, and trees. However, less attention has been
given to coherent stylized silhouettes (cf. [Masuch et al. 1997;
Kalnins et al. 2003]).

In contrast to Fischer et al. [Fischer et al. 2005] our algorithm uses
the basic concepts proposed by Curtis. In our case, both the vir-
tual content (3d scenario) and the real scenario (the video input)
uses a “different” rendering mechanism. Consequently, for both
images (the augmented, virtual content and the real scene) we used
different input to achieve the best NPR results. So, for example,
we used the depth-information to create silhouettes of the virtual
3d objects. In addition, 3d objects closer to the camera viewpoint
could be drawn with thicker silhouette lines than objects that were
far away. Fischer’s algorithm is mainly based on edge-detection and
it renders the silhouette edge in a normal way. In contrast, our al-
gorithm is based on a particle system, which allows more flexibility
and results in a more stylistic image.

3 Real-time Loose and Sketchy approach

The Loose and Sketchy technique of Curtis produces images that
appear to be drawn by hand. It automatically draws the visible sil-
houette edges of a 3D model using image processing and a stochas-
tic, physically-based particle system.

~Sobel-Filter<y

~—Gauss-Filter~,

~Particle System<,

Reference Image Draw Lines

@ .
Framebuffer Blurring
3D-Scene Final Image
77
ook o

'(w.’-""{"-"r--_.ll

2 p

o ol il

Paper Texture

Figure 3: The pipeline of the real-time Loose and Sketchy algorithm.

Due to its complexity, the original Loose and Sketchy method
could not be used for real-time applications. To apply the same
style of rendering in real-time, we modified the technique of Curtis
by extensively using modern 3D hardware—particularly the pro-
grammable graphics pipeline. The real-time method is still based
on the same principles as laid out in [Curtis 1999], albeit with minor
simplifications.

In the following sections the steps involved in creating a real-time
Loose and Sketchy image are discussed. The graphics pipeline of
the described system is shown in figure 3.

3.1 Preprocessing

The Loose and Sketchy algorithms rely heavily on image process-
ing, both for edge detection as well as the blurring of the scene. The
edge detection filter operates on the depth-buffer and the blur filter
manipulates the color-buffer. To perform these filters successfully,
the appropriate buffers have to be prepared first.

Direct rendering to textures using PBuffers [Wynn 2002] allows for
rapid generaton of the necessary data. Once defined as a render tar-
get, the rendering process draws directly into the appropriate color-
and depth-buffer textures of the PBuffer—without taking a detour
over the standard on-board frame- and depth-buffer. Afterwards
these textures can be used just like normal OpenGL textures.

3.2 Generating the reference image

The reference image holds two different kinds of data important for
drawing the strokes. Firstly, it contains the silhouette information
of the scene and, secondly, a "force field” which is used to place the
strokes along the silhouettes. By applying the Sobel edge detection
filter on the depth-buffer texture, the necessary data can be found
for constructing the reference image.

In contrast to Fischer et al. [Fischer et al. 2005], we do not use the
Canny filter, because we needed to create “force field” vectors to

determine the movement of the particles.

The Sobel operator performs a 2D spatial gradient measurement on
an image and then emphasizes regions of high spatial gradient that
correspond to edges. Since discontinuities in neighboring depth-
buffer values occur mostly at the 3D-objects’ contours, only sil-
houette edges and a few boundary edges will be detected—but this
is exactly what is needed. In [Saito and Takahashi 1990], Saito and
Takahashi introduced how to find boundary edges by taking into
account discontinuities in neighboring surface normal values.

The Sobel edge detection filter consists of a pair of 3 x 3 convolu-
tion masks shown in equation 1, where the second matrix is simply
the transposition of the first one.

1 0 -1 1 2 1
Gi=1|2 0 -2 Gy=| 0 0 0 1)
1 0 -1 -1 -2 -1

The masks are applied separately to the depth-buffer, to produce
separate measurements of the gradient component in each orienta-
tion. These components are then combined to form a 2D vector.

The absolute magnitude of this gradient vector is used to determine
if an edge has been found at the current pixel position. In order to
assert an edge, the absolute magnitude of the gradient vector must
exceed a defined threshold value. The lower the threshold, the more
edges that will be found, since a lower magnitude is sufficient for
“edge-qualification”—a higher threshold results in fewer detected
edges. The "force field” is obtained by calculating unit vectors per-
pendicular to the gradient vector.

The reference image’s creation is completely performed inside a
fragment shader and the results of the fragment program are written
to a texture. Therefore, the silhouette information as well as the
“force field” data has to be encoded as pixel values. The pixel’s
blue component contains a value which determines whether an edge
has been found or not. If no edge has been detected this value is set
to 0. However, if an edge is present, the depth-buffer’s data of the

Figure 4: Using the "force field”, new particles are created along
the silhouette.

current pixel location is stored instead. This information can be
useful later on when drawing the lines. The red and green values of
the pixel hold the x- and y-components of the force field” vector
respectively.

3.3 Drawing the outlines

The reference image shows where the objects’ silhouettes are to
be found. The final image consists of individual brush strokes that
are drawn along these silhouettes. After calculating the reference
image using a fragment shader, it is stored as a texture. Since the
reference image has to be accessible when drawing the strokes, the
contents of this texture have to be read back into main memory. Un-
fortunately, this “memory read-back” is a very demanding process,
and is to be held as the scapegoat for being the major bottleneck in
the whole application.

For rendering the brush strokes on the screen we implemented a
special particle system. A single stroke consists of multiple parti-
cles, which determine the stroke’s position and course. For each
frame a predefined number of particles are consecutively emitted,
and placed randomly on the screen. By looking up the reference
image, we assert if the particle’s position is located at a silhouette
edge. If this is not the case the particle gets deleted immediately.

If the particle is located on a silhouette edge, it is defined as the
starting point of a new brush stroke. Moving some steps from this
starting point along the direction of the previously created “force
field”, the next point of the stroke is derived. In a similar manner,
now starting from the second point, a further point of the stroke is
determined. This process is reiterated until a point departs from the
silhouette edge or the desired stroke length is exceeded (cf. figure
4).

After this procedure, the particles which make up a single stroke
are exactly specified. Apart from the position, a particle stores ad-
ditional parameters which can be used to modify the visual appear-
ance of the stroke. For example, by taking information of the orig-
inal depth-buffer into account, more distant objects can be repre-
sented by thinner brush strokes to give hints on the depth conditions
of a scene.

The process of generating a single brush stroke is repeated until the
desired number of strokes is reached. As soon as the characteristics
for all strokes are defined, they can finally be drawn onto the screen.

We implemented three different methods to render the strokes:

1. The strokes are rendered using textured polygons (cf. figure 5
(a)). This method displays changes in the visual appearance of
a stroke with a smooth transition using modern graphics hard-
ware. For example, by increasing the transparency along the
stroke’s length, a subtle fade-out for the brush strokes can be
achieved. Furthermore, the line thickness can be precisely set

by appropriately adjusting the polygons’ size. Another ma-
jor advantage is the possibility of rendering the polygons with
textures attached to them. By the use of brush textures, a mul-
titude of different drawing styles can be imitated, as can be
seen in table 2. Thus, this approach represents the most artis-
tically versatile style. The silhouettes were created by using
normal quad strips and attaching brush strokes. To guaran-
tee that this does not result in “stretching artifacts”, the brush
stroke textures have to be chosen carefully (cf. table 2).

2. The brush strokes are rendered using the OpenGL
GL_LINE_STRIP command (cf. figure 5 (b)). This so-
lution is not well suited for the task of drawing brush
strokes. The biggest drawback of this method is that smooth
transitions of transparency, stroke width or color, cannot be
achieved. Moreover, the lines tend to be aliased and therefore
they produce artifacts that interfere with the perception of a
drawn style.

3. An interesting option is to use the particles in a more conven-
tional manner. Instead of generating brush strokes, each par-
ticle stands on its own and a bitmap is rendered at its position
(cf. figure 5 (c)). A particle stays alive for a certain period of
time and moves along the silhouette using the reference im-
age. The particle is destroyed after its time expires—not when
leaving the silhouette. A problem with this approach appears
when the objects in the scene move rather fast, causing their
silhouette to change dramatically per frame. Since the parti-
cles stay on the screen for some time and travel only a small
distance, the result lags behind the current proper silhouettes.

©

L
/
/@

—

(2) (b (©)

Figure 5: The various rendering methods produce distinctively dif-
ferent results.

The reference image is computed for every single frame to properly
reflect changes in the 3D scene. Because of this, the brush strokes
also have to be redrawn in every frame. Since the strokes are cre-
ated randomly, they are different every time and a frame-to-frame
coherence between the brush strokes is not guaranteed.

3.4 Blurring the background

The techniques presented so far are capable of rendering 3D scenes
as pure outline drawings. In order to create the final image the

bodies of the sketched objects are filled with color. Color provides
a better understanding and allocation of the displayed scene.

The color information obtained by a standard rendering pass serves
as a basis for the color fill. As discussed in 3.1 a texture was pre-
pared containing the color-buffer of the rendered scene. By blur-
ring this texture, the colors appear to fill the strokes completely
despite the fact that the strokes do not coincide with the edges of
the objects. This works because our brains process color and edge
information separately [Curtis 1999]. Blurring the color texture re-
moves the high-frequency information that would otherwise cause
an impression of a double edge.

The blurring is accomplished in hardware using a two-dimensional
image-processing filter as described in [Fernando 2004, Cha. 21].
First, the color-buffer texture is blurred in one axis to produce a
temporary image. This image is then blurred in the other axis to
produce the final blur. This procedure is demonstrated in figure 6.

o OoOo0

SR AV

oot N
AVAVAVAVALS

/ 7 /

'
'

(a) (b) (c)

Figure 6: The Gaussian blur is implemented as a two-step opera-
tion.

By implementing the blur as a two-step operation, the processing
time is reduced dramatically. The time required to perform a blur is
dependent on the proportion of the blur’s area. The larger the blur
the more surrounding pixels that have to be taken into account. In
a single pass, the area is proportional to the blur diameter squared
(d%). This would make large-area blurs impractical for real-time
usage. By blurring the image in a two-step operation the cost is
reduced from d? to 2 - d, which can easily be handled by modern
graphic cards.

The source code of a Gaussian blur using a two-step approach is
available from the Scotopic Vision Demo from nVIDIA’s SDK'. We
basically used the same code for creating the blur effect in the real-
time Loose and Sketchy renderer.

3.5 Putting it together

First, the blurred color texture is rendered onto the screen. After-
wards, to enhance the “"handmade” illusion, we add a paper texture
to the rendering. Finally, the brush strokes are drawn on top of the
composed image. All the steps involved in creating a Loose and
Sketchy rendering are presented below (and shown visually in fig-
ure 3):

Thttp://developer.nvidia.com

for each frame of animation
render scene to PBuffer
generate reference image from depth-buffer
update particle system with reference image
blur color-buffer texture

render blurred color texture to framebuffer
multiply framebuffer by paper texture
for each particle (that starts a stroke)
add brush stroke to framebuffer
end for
end for

4 Integrating real-time Loose and Sketchy
into the AR environment

In a video see-through AR environment, a video stream from a cam-
era is acquired and rendered as a background image for the virtual
3D objects. In order to achieve a seamless combination of both the
real and the virtual objects, and thereby an immersive impression of
a believable world, everything has to be drawn in the same visual
style.

To be able to apply the brush strokes that are used for rendering the
3D objects’ silhouettes, to the background image as well, a refer-
ence image for the real environment has to be generated. By apply-
ing the same Sobel edge detection filter, albeit with higher threshold
settings to the red channel of the background image, we are able to
create decent silhouette information for the real environment. In
real-life scenarios, a certain amount of noise cannot be avoided (at
least not without prior processing), and we have to compensate this
flaw by setting a higher threshold. Since the contents of the depth-
buffer are strictly computer generated, there is no need to worry
about noise in the image and we generally get away with a lower
threshold.

When creating the 3D objects’ reference image, the silhouette infor-
mation of the real environment is passed to the shader program. The
fragment shader calculates the objects’ silhouettes and also merges
both reference images into one which is subsequently used to place
the brush strokes onto the screen. By calculating the silhouettes of
the real and virtual images separately, and subsequently merging
them, we are able to control the parameters of the edge detection
processes individually to achieve better results.

The blurring of both the real and the virtual objects is achieved by
rendering the 3D objects on top of the acquired video frame, and
processing the two-step blur on that image. After the paper texture
is blended, we draw the brush strokes to get the final Loose and
Sketchy result in an AR environment.

5 Results and Discussions

Figure 8 (a) shows a traditional AR rendered scene of an augmented
(not realistic rendered) bottle. Figures (b) to (d) represent different
stages of the Loose and Sketchy algorithm. The installation has
been presented at the local city art gallery, where about 200 people
had the possibility to give their feedback. It was interesting to see
that people really loved to watch themselves in a different style (cf.
figures (d), (e), and (f)). They liked the stylistically rendered scene
much more than the Gouraud shaded still life. They were amazed
by the fact that they could not distinguish between the real and the
virtual objects while using a handheld visor.

After blurring the scene, the augmented and the real objects were
difficult to distinguish. Some of the visitors criticized the fact that
the whole scene was too blurred; they were thinking that the cam-
era’s lens was incorrectly calibrated. However, the combination
with the paper texture for the background gave the scene the im-
pression of a painted, sketched image. Finally, by using a sketched
border, people really had the impression of watching a sketched AR
environment.

All scenes were rendered on a 2.8 GHz PC with 1 GB of memory
using an nVIDIA Geforce FX 6800 with 256 MB. The performance
does not depend on the complexity of the rendered model, thus in
our case we achieved 16.87 fps. A more detailed overview of the
frames-per-seconds is given in table 1, which shows different sce-
narios rendered in the blurred style, adding the sketchy silhouette,
and adding the background paper. In the two testing environments,
we used a model with 894 polygons for the first scene (bottle ge-
ometry) and 10,182 polygons for the second scene (Van Gogh’s
bedroom geometry) respectively. Notice that the performance was
measured in combination with the ARToolKit for marker detection
and using an ADS webcam delivering a resolution of 640x480 pix-
els at 30 fps. One of the biggest bottlenecks, was the ARToolKit
marker detection library, which runs on the CPU rather than the
GPU.

| Scenario | Shading | fps |
Add blurring 18.51
Add edges 16.95
Add paper 16.87
Add blurring 18.40
Add edges 16.80
Add paper 16.54

Table 1: The performance of sketchy-ar-us in two different scenar-
10s.

In contrast to [Fischer et al. 2005], our approach uses a completely
different method for rendering the scene in a non-photorealistic
style. In our case, the silhouette strokes are placed randomly, which
itself results in a more “dynamic” image. This is the desired effect,
since it animates the outcoming image and gives the scene a life of
its own.

Thanks to the blurring effect, we didn’t have to care about a one-
to-one matching of the real scenario properties with those of the
virtual content (i.e. guaranteeing the same lighting parameters and
light positions as in the real environment). The missing shadows,
the wrong light position and the corresponding wrong shading (be-
cause of the fixed OpenGL light position) was never criticized by
the visitors.

In our example, the virtual and the real images have been sent in-
dividually to the Loose and Sketchy pipeline. Thus, the parameters
for the silhouettes (e.g. the edge detection) could be controlled indi-
vidually to achieve better results. Table 2 shows some brush strokes
used for the silhouette and the corresponding close-up of the stylis-
tic rendered image.

One problem with our rendering approach occurs with the usage
of the depth-buffer for the silhouette detection. Long drawn-out
surfaces pointing towards the user can cause unwanted silhouette

(@) (b)

Figure 7: Unwanted silhouettes might occur in long drawn-out sur-
faces.

detection inside the surface. This is because the depth information
inside the shape changes extremely, which results in depth layers,
interpreted as silhouettes (cf. figure 7).

6 Future Work and Conclusion

In this paper, we have presented a real-time version of Curtis’ al-
gorithm for rendering AR images in a Loose and Sketchy style (cf.
[Curtis 1999]). By using modern graphics hardware and high-level
shader languages, the process is fast enough to be applied in real-
time AR environments. NPR in an augmented environment can be-
come more and more important, especially for artistic applications:
by making images look less photorealistic, artists enable audiences
to feel more immersed in a virtual world [McCloud 1994]. Our pri-
mary interest was to enable the use of real-time stylized rendering
to create a more compelling and interesting environment.

One problem of our proposed algorithm was the lag of stylized sil-
houettes with a robust frame-to-frame coherence. The “flickering”
effect, as it was proposed by Curtis, can become disturbing once
the objects are moving fast. The particle position, which is calcu-
lated randomly within the silhouette path, has to be chosen more
carefully from one frame to the other. Kalnins et al. proposed
in [Kalnins et al. 2003] one possible solution for propagating the
parametrization from strokes in one frame to strokes in the next.
We would like to combine these presented ideas with our algorithm
to achieve more compelling results.

Moreover, we want to adapt our algorithm not just on the whole
frame and render both the real and the virtual content in the same
style. We believe that in some cases it makes more sense to render
just parts of the scenario in a non-photorealistic style to enhance
regions of the scenario.

Finally, we want to start a formal usability study to get feedback
what people expect from AR in combination with NPR. People have
a wide different view regarding the benefits of a non-photorealistic
rendered AR scenario and it would be intersting to find out in which
sense it influences the visual perception.

(a) Gouraud rendered image. (b) Blurred colored image.

(c) Combination of color and paper texture.

R
\ o N

he— 1

(i
|
\

(,

-

(e) The still life without paper texture and shading color. (f) Still life with paper texture but no shading color.

Figure 8: Different scenario results including some steps of the rendering process of sketchy-ar-us.

Table 2: Different brush textures for the strokes result in different appearances of the scenario.

References

AGUSANTO, K., L1, L., CHUANGUI, Z., AND SING, N. W. 2003.
Photorealistic rendering for augmented reality using environ-
ment illumination. In IEEE/ACM International Symposium on
Mixed and Augmented Reality (ISMAR 2003), IEEE Computer
Society, 208-216.

BIMBER, O., GRUNDHOEFER, A., WETZSTEIN, G., AND
KNOEDEL, S. 2003. Consistent illumination within optical see-
through augmented environments. In IEEE/ACM International
Symposium on Mixed and Augmented Reality (ISMAR 2003),
IEEE Computer Society, 198-207.

CARD, D., AND MITCHELL, J. 2002. Non-Photorealistic Ren-
dering with Pixel and Vertex Shaders. In Direct3D ShaderX,
Wordware, W. Esngel, Ed.

COLLOMOSSE, J. P., ROWNTREE, D., AND HALL, P. M. 2003.
Stroke surfaces: A spatio-temporal framework for temporally
coherent non-photorealistic animations. Tech. Rep. 2003-01,
University of Bath, U.K., Bath, June.

COLLOMOSSE, J. P., ROWNTREE, D., AND HALL, P. M. 2003.
Video analysis for cartoon-like special effects. In [4th British
Machine Vision Conference, 749-758.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER,
K. W., AND SALESIN, D. H. 1997. Computer-generated water-
color. In Proceedings of SIGGRAPH 97, 421-430.

CURTIS, C. 1998. Non-photorealistic animation. In Proc. ACM
SIGGRAPH 1998, ACM Press.

DURAND, F. 2002. An invitation to discuss computer depiction.
In Proceedings of the second international symposium on Non-
photorealistic animation and rendering, ACM Press, 111-124.

FERNANDO, R. 2004. GPU Gems. Addison-Wesley.

FERWERDA, J. 2003. Three varieties of realism in computer graph-
ics. In Proceedings SPIE Human Vision and Electronic Imaging
"03.

FISCHER, J., BARTZ, D., AND STRASSER, W. 2005. Stylized
Augmented Reality for Improved Immersion. In Proceedings of
IEEE Virtual Reality (VR 2005).

GIBSON, S., COOK, J., HOWARD, T., AND HUBBOLD, R. 2003.
Rapid shadow generation in real-world lighting environments. In
EGRW °03: Proceedings of the 14th Eurographics workshop on
Rendering, Eurographics Association, 219-229.

GOGOLIN, H. 2004. Wenn weniger mehr ist. GEE Magazin 6
(August), 64-68.

GOOCH, A., AND GOOCH, B. 2001. Non-Photorealistic Render-
ing. AK Peters, Ltd., July 1. ISBN: 1568811330, 250 pages.

GoocH, B., COOMBE, G., AND SHIRLEY, P. 2002. Artistic
vision: painterly rendering using computer vision techniques.
In Proceedings of the second international symposium on Non-
photorealistic animation and rendering, ACM Press, 83—ff.

GOURAUD, H. 1971. Continuous shading of curved surfaces. In
1IEEE Transactions on Computers, 623—-629.

GRASSET, R., GASCUEL, J., AND SCHMALSTIEG, D. 2003. In-
teractive Mediated Reality (poster). In IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality (ISMAR),
302.

HAEBERLI, P. E. 1990. Paint by numbers: Abstract image repre-
sentations. In Proceedings of SIGGRAPH 90, 207-214.

HALLER, M., AND SPERL, D. 2004. Real-time painterly rendering
for mr applications. In Graphite, International Conference on
Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia.

HALLER, M., DRAB, S., HARTMANN, W., AND ZAUNER, J.
2003. A real-time shadow approach for an augmented reality
application using shadow volumes. In ACM Symposium on Vir-
tual Reality Software and Technology.

HALLER, M. 2004. Photorealism or/and non-photorealism in aug-
mented reality. In VRCAI '04: Proceedings of the 2004 ACM
SIGGRAPH international conference on Virtual Reality contin-
uum and its applications in industry, ACM Press, 189-196.

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering
for video and interaction. In Proceedings of the first interna-
tional symposium on Non-photorealistic animation and render-
ing, ACM Press, 7-12.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. ACM
Trans. Graph. 22, 3, 856-861.

KATO, H., AND BILLINGHURST, M. 1999. Marker tracking and
hmd calibration for a video-based augmented reality conferenc-
ing system. In Proceedings of the 2nd International Workshop
on Augmented Reality (IWAR 99).

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOUR-
DEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. F.
1999. Art-based rendering of fur, grass, and trees. In SIGGRAPH
'99: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 433-438.

LANDERL, F. 2005. Skizzenhaftes Rendering in Echtzeitanwen-
dungen. Master’s thesis, Fachhochschule Hagenberg, Medien-
technik und -design, Hagenberg, Austria.

MANN, S., AND FUNG, J. 2001. VideoOrbits on Eye Tap devices
for deliberately Diminished Reality or altering the visual percep-
tion of rigid planar patches of a real world scene. In International
Symposium on Mixed Reality (ISMR).

MANN, S. 1994. Mediated reality. TR 260, M.L.T. Media
Lab Perceptual Computing Section, Cambridge, Massachusetts,
http://wearcam.org/mr.htm.

MASUCH, M., SCHLECHTWEG, S., AND SCHONWALDER, B.
1997. dali! - drawing animated lines! 87-95. ISBN 1-56555-
111-7.

McCLOUD, S. 1994. Understanding Comics. Perennial Currents.

MEIER, B. J. 1996. Painterly rendering for animation. In Proceed-
ings of SIGGRAPH 96, 477-484.

NAEMURA, T., NITTA, T., MIMURA, A., AND HARASHIMA, H.
2002. Virtual Shadows - Enhanced Interaction in Mixed Reality
Environment. In IEEE Virtual Reality (VR’02).

NIENHAUS, M., AND DOELLNER, J. 2004. Blueprints: illustrating
architecture and technical parts using hardware-accelerated non-
photorealistic rendering. In GI '04: Proceedings of the 2004
conference on Graphics interface, Canadian Human-Computer
Communications Society, 49-56.

NORTHRUP, J. D., AND MARKOSIAN, L. 2000. Artistic silhou-
ettes: A hybrid approach. In Proceedings of the First Interna-
tional Symposium on Non Photorealistic Animation and Render-
ing (NPAR) for Art and Entertainment.

PrRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-time hatching. In Proceedings of SIGGRAPH 2001,
581.

RASKAR, R., AND COHEN, M. 1999. Image precision silhouette
edges. In SI3D ’99: Proceedings of the 1999 symposium on
Interactive 3D graphics, ACM Press, 135-140.

RASKAR, R., TAN, K.-H., FERIS, R., YU, J., AND TURK, M.
2004. Non-photorealistic camera: depth edge detection and styl-
ized rendering using multi-flash imaging. ACM Trans. Graph.
23,3, 679-688.

Roussou, M., AND DRETTAKIS, G. 2003. Photorealism and
non-photorealism in virtual heritage representation. In VAST

2003 and First Eurographics Workshop on Graphics and Cul-
tural Heritage, A.Chalmers, D.Arnold, and F. Niccolucci, Eds.,
Eurographics.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible render-
ing of 3-d shapes. In SIGGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 197-206.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND
SALESIN, D. H. 1994. Interactive pen-and-ink illustration. In
Proceedings of SIGGRAPH 94, 101-108.

STROTHOTTE, T., AND SCHLECHTWEG, S. 2002. Non-
Photorealistic Computer Graphics: Modeling, Rendering and
Animation, 1 ed. Morgan Kaufmann, June 15. ISBN:
1558607870, pages 472.

SUGANO, N., KATO, H., AND TACHIBANA, K. 2003. The effects
of shadow representation of virtual objects in augmented reality.
In ISMAR, 76-83.

WYNN, C. 2002. OpenGL Render-to-Texture. TR, nVIDIA Cor-
poration, March.

