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Abstract—This work presents an approach to render 

appropriate shadows with Image Based Lighting in Augmented 
Reality applications. To approximate the result of environment 
lighting and shadowing, the system uses a dome of shadow casting 
light sources. The color of each shadow is determined by the area 
of the environment behind the casting light source. As a result it is 
possible that changes in the lighting conditions immidiately affect 
the shadow casting of virtual objects on real objects. 
 

Index terms— Augmented Reality, Image Based Lighting, 
Real-Time, Soft Shadows  
 

I. INTRODUCTION 
Photorealistic rendering in Augmented Reality (AR) 

applications is still one of the most challenging research topics 
in AR. Bimber et al. postulate in [1] a consistent lighting 
situation between real and virtual objects to achieve a 
convincing Augmented Reality application. Sugano et al. and 
Madsen et al. underline the importance of consistent shadows 
in an AR scenario [2, 3]. Shading and shadows in both worlds 
must match to achieve a natural merge [4, 5]. Thus the shading 
and the shadows of the virtual lights have to be consistent with 
the real world. Agusanto et al. present in [6] the seamless 
integration of virtual objects in an AR environment using 
Image Based Lighting (IBL) techniques and environment 
illumination maps. They postulate a consistent and a coherent 
virtual world with respect to the real environment. 

Image Based Lighting is an efficient technique to illuminate 
objects with textures of the real environment [7]. It can be seen 
as a combination of the techniques of Reflection Mapping [8] 
and Illumination Mapping [9]. While Image Based Lighting 
alone is well suited for real-time applications, problems arise 
when it comes to shadowing. Casting shadows requires light 
sources at distinct positions. Those are not available when 
lighting is done with textures.  

This paper describes a technique to generate shadows for 
scenes lit with Image Based Lighting. The shadows are 
sensitive to any changes in the ubiquitous lighting. If the light 
source changes its size, the softness of the shadow adapts 
accordingly. 
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Moreover, the color of the shadow depends on the color of the 
light source. Shadows add the level of realism to a rendered 
image. As described in [5], shadows are a very essential factor 
for the 3D impression of a scene. The seamless merging of the 
virtual world and the real world is a challenging topic in current 
Augmented (Mixed) and Virtual Reality research. 
 

II. RELATED WORK 
Fournier et al. were one of the first researchers, who 

combined real video images with computer generated content 
focusing on the problems of common viewing parameters, 
common visibility, and common illumination [10]. Global 
lighting models (e.g. progressive radiosity) are still not suitable 
for AR applications, because they require a complete scene 
description. Saito et al. present a method for measuring a 
radiance distribution of the real scene [11]. By using an 
omnidirectional stereo algorithm, they first create a geometric 
model of the scene. The radiance of the scene is computed from 
a sequence of omni-directional images taken with different 
shutter speeds and mapped onto the constructed geometric 
model. A similar algorithm is presented by Gibson et al. [12]. 
They use a large number of fixed pre-calculated light sources, 
and allow rendering of impressive quality at interactive frame 
rates. In contrast, Kakuta et al. [13] use a large amount of fixed 
light sources to render objects under changing lighting 
conditions. The objects are nevertheless pre-processed and 
cannot be moved during run-time. 

A large amount of research in Image Based Lighting is done 
by Debevec [7, 14, 15]. He suggests a division of the 
environment map in areas of equal integrated brightness to find 
positions of virtual light sources for shadow creation in offline 
rendering [16]. The achieved rendering results are more than 
impressive. Nevertheless most of the results are not rendered in 
real-time. Agusanto et al. demonstrate in [6] a real-time IBL 
technique, where they mainly focus on improving lighting 
results without taking into account shadows. 

Only few researchers are focusing on real-time shadows for 
AR-based scenerios [2, 5]. In our first prototype, we combined 
shadows of real objects with virtual objects and vice versa 
using shadow volumes [17]. However, shadow volumes seem 
to be too complicated to be used for achieving good results with 
high performance. Soft shadow maps in combination with 
Image Based Lighting techniques seem to be a good way to 
achieve better results. Karlsson and Selegard [18] integrated 
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soft shadows in an AR scenario using IBL techniques. 
However, they only allow one fixed shadow. Unlike previous 
work, our system benefits from the following features: 
-  Seamless integration of a virtual scenario: Virtual and 

real shadows always fall into the same direction with the 
same color and intensity. 

- Image Based Shadowing: Shadows are controlled by an 
image of the environment. There are no limitations in the 
number and shape of real light sources in the environment. 

- Presentation of three setups: We demonstrate three 
different AR scenarios using a single-camera setup with a 
gazing sphere, and two multi camera setups combined 
with a mirrored sphere and a fisheye lens for capturing the 
environment. 

- No pre-processed data: Our approach does not rely on 
pre-processed data and thus allows changes of the light 
situation and changing of object positions during runtime. 
Nevertheless, this comes at the cost of higher 
computation. 

 

III.    SETUPS 
We implemented three different setups to test our approach 

 (cf. Fig. 1). In the first scenario, we had a single-camera setup 
in combination with a mirrored (gazing) sphere. The same 
camera captures both the real scene and the mirrored sphere in 
the scene. The sphere is in a fixed position relative to the origin 
of the tracking system (e.g. ARToolKit) and is cropped out of 
the video image. 

The advantage of this setup is that we only have to use one 
camera. Conversly, the resolution of the environment map 
depends on the size of the mirrored sphere in the camera image. 
Since both the marker and the mirrored sphere have to be 
visible in the camera image at any time, the size of the sphere in 
the camera image is often very small. As a result the resolution 
of the sphere map is very low. Furthermore, it often happens 
that the mirrored sphere gets out of the camera image, which 
causes that the environment cannot be updated. 

The second setup was a two-camera setup with a mirrored 
sphere. One camera captures the real scene and the other (at a 
fixed position) tracks the mirrored sphere. Since the mirrored 
sphere is captured by a separate camera, it is not possible that 
the sphere is outside of the camera image. Furthermore, the 
resolution of the environment map does not depend on the 
distance of the camera, since we always have the same distance 
from the camera to the mirrored sphere. Notice that both 
cameras have to be calibrated well, so that the environment map 
matches the image of the scene camera. Otherwise the cameras 
often have different white-balance and exposure setting which 
usually causes a mismatch of lighting of real and virtual 
objects. 

Finally, in the third scenario, we used a two-camera setup in 
combination with a fisheye lens (180°). The mirrored sphere is 
replaced by the camera with the fisheye lens which captures the 
real environment. Thus the setup becomes simpler and easier to 

calibrate, since there is no mirrored sphere. However, a fisheye 
lens usually has a smaller field of view than the mirrored sphere. 
Consequently, a smaller part of the environment is visible in the 
map. 

(a) 

(b) 
Fig. 1.  In picture (a) the setup with two cameras and a mirrored sphere is visible. 
Notice that in the single-camera setup, we just use the left camera for tracking 
both the environment and the mirrored sphere. Picture (b) shows the setup with 
two cameras and a fisheye lens, which is simpler and faster to assemble. See 
Color Plate 1. 

 

IV. IMAGE BASED SHADOWING PIPELINE 
An overview of our algorithm is depicted in Fig. 2. 

Depending on the setup, the images of one or two cameras are 
used as input to the pipeline. From these images the position of 
the camera in world space is extracted. Moreover, the image of 
the mirrored sphere is cropped and copied into a texture. This 
texture, the Reflective Environment Map, is then blurred to 
create a diffuse Irradiance Map. Since both the original 
Reflective Environment Map and the Irradiance Map are in 
Sphere Map format, they are converted to cube maps. In what 
follows the resulting cube maps are used for lighting while 
rendering the virtual objects. 
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The specular lighting is realized with reflection mapping [8]. 
The diffuse lighting is done as described in [9], where the 
surface normal of a point is used for a texture lookup into an 
environment map. Shadowing is performed by creating a 
reasonable amount of light sources around the scene which cast 
shadows with shadow maps. Each of these light sources 
determines its intensity and color from the area of the 
environment map behind the light source, as seen in Fig. 3. 

 
Fig. 2.  Overview of the Image Based Shadowing pipeline. See Color Plate 2. 
 

Fig. 3.  The color of every light source depends on the average color of an area 
of the Environment Map behind the light source. 

 
Similar to environment mapping, we assume that the 

environment is far away from the rendered scene. With this 
assumption, we can ignore the distance of light-emitting areas, 
which alleviates rendering. Our algorithm performs best when 
we simulate soft shadows cast from relatively large direct or 
indirect light sources far away in the environment. Our 
approach although fails to simulate a hard shadow cast by point 
lights or light sources located very near or inside the scene, due 
to the limited number of light sources. 

 

V. ALGORITHM 
Our algorithm for shadowing a scenario is based on three 

steps, which can be defined as follows: 
1) Creating the Shadow Maps: We create the Shadow Map 

by rendering the scene from the view of every light source 
(in our setup we used up to 64 light sources simultaneously) 
and storing the depth buffer in a separate texture. Since the 
rendering of many shadow maps for each frame can 
become very expensive, we only update one shadow map 
(of only one light source) in each frame. 

2) Creating the Shadow Buffer: Next, we create a texture 
called Shadow Buffer containing the accumulated shadows 
of all light sources. To create this texture we render the 
scene from the view of the camera. The shadows of all 
light sources are rendered and the results added (see 
SectionⅤ (B)). The color of each shadow is determined by 
the environment map (cf. Section Ⅴ(C)). 

3) Rendering with the Shadow Buffer: Finally, we render the 
scene from the point of view of the camera. The Shadow 
Buffer created before is projected on the scene. At every 
pixel the value stored in the Shadow Buffer is subtracted 
from the diffuse lighting value of the pixel to realize 
shadowing (see Section Ⅴ (D)). 

A. Calculating the Shadow Maps 

The scene is rendered from the view of the light source. The 
color writing flag is disabled so that only depth values are 
written into the buffer. Next, we copy the depth values to a 
depth texture, where one depth texture is stored along with 
every light source. 

B. Calculating the Shadow Buffer 

In step two of our algorithm, the shadow intensity of every 
light source is determined. Fig. 3 shows a cross section of the 
used scene. In theory each point P on the surface receives light 
from every visible light source. This means that the incident 
light on P equals the accumulated light from every light source 
not casting a shadow on P. If the surface is lit by Lambert’s law, 
the influence I of every light is calculated as follows 

I C N L S= ⋅ • ⋅ , (1) 

where C is the color of the light source, N is the normal of the 
surface and L is the normalized vector from the rendered point 
P to the light source. The shadowing factor S equals 0.0 if the 
light casts a shadow on the rendered point and 1.0 if the point is 
in light. The illumination IL on every point is therefore 
calculated as the sum of all light intensities 

0

n

i i
i

IL C N L
=

S= ⋅ • ⋅∑ , (2) 

where n is the number of all light sources. In our application 
there are objects which are already lit (e.g. the ground plane, 
which receives shadows from virtual objects but does not 
receive light from virtual light sources). To deal with these 
objects, we do not calculate the radiance a point receives from 
any light source but the radiance R a point does not receive 
because of shadowing. R is determinded by calculating the 
illumination as described in equation 2, but with inverted 
shadowing factor S: 

0

(1 )
n

i i
i

R C N L S
=

= ⋅ • ⋅ −∑
 (3) 

C. Acquiring the Light Color and Shadow Value 

Notice that for equation 2 the color of the light source has to 
be calculated. This color depends on the color of the area of the 
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environment map behind the light source. To achieve it, we 
simply ”downsample” the cube environment map to a low 
resolution (4x4 or 8x8 texels per face as depicted in Fig. 4(c)). 
As a result, every texel now ”contains the average” of all 
surrounding texels in the original high resolution cube map 
(like Fig. 4(b)). Now the positions of the light sources are set in 
a way that every light source lies in the center of one cube map 
texel (see Fig. 4(a)). The color of every light source is set to the 
color of the texel behind it. 

The shadowing factor S is the result of the Shadow Map 
texture lookup and tells if a point is lit by the currently 
calculated light source or if it is in shadow. In Fig. 3 and 4(a) S 
is shown by the fill color of the light source symbols. 

 
(a) 

  
(b) (c) 

Fig. 4.  The final color of the light source is determined by performing a lookup 
into a downsampled Cube Environment Map. 

D.  Combining Shadows and Lighting 

Once the Shadow Buffer is ”finished”, the final lighting can 
be realized. Specular lighting is calculated by performing a 
lookup in the Reflective Environment Map at the direction of 
the reflected eye vector. In contrast, diffuse lighting is 
calculated by a lookup in the Irradiance Map at the direction of 
the surface normal of the rendered point. The received value is 
the amount of diffuse light the point receives if the whole 
environment is visible.  

The amount of  light which does not receive the rendered 
point, because it was blocked by another object, is stored in the 
Shadow Buffer. This amount has to be subtracted from the 
diffuse lighting value to achieve correct lighting, as illustrated 
in Fig. 5. Thererfore, at every pixel, lighting is calculated as 
follows: 

( )I d s sp= − + , (4) 

where I is the light intensity, d is the calculated diffuse 
lighting value, s is the value from the Shadow Buffer and sp is 
the calculated specular lighting value. 

In our setup, real object should not receive lighting but shall 

receive shadows from virtual objects. We call these objects 
Phantom Objects [19]. An example is the ground plane. For 
these objects, the lighting calulations are omitted (because they 
are already lit by real light). Finally, the value in the Shadow 
Buffer is subtracted from the original color value to get the 
impression of cast shadows (although correct results are only 
achieved for diffuse objects). 

 
Fig. 5.  First the Shadow Buffer is created in several passes with eight light 
sources each. Then the result is fed into the lighting pass and affects the diffse 
lighting value.  

 

VI. IMPLEMENTATION DETAILS 
The algorithm described above is implemented in OpenGL 

using the Cg shading language. It is split into several render 
passes. 
1) Environment map processing steps: 

Cropping the Sphere Map: We render a quad with the video 
image of the camera. The texture coordinates are chosen so that 
only the picture of the mirrored sphere is visible. 

Creating the Irradiance Map: We render a quad with the 
Sphere Map and perform a seperable 2D-Gaussian blur on the 
map. 

Converting to cube maps: We convert the sphere maps to 
cube maps by rendering six quads. Each quad corresponds to 
one face of the Cube Map and each pixel of the quad becomes a 
texel in the Cube Map. Notice that the texture coordinates of the 
quads are chosen in a way that the texture coordinates of every 
rendered pixel equal to the 3D-vector into space the Cube Map 
texel will represent. In the fragment shader, this 3D-vector is 
converted to a 2D-vector for a simple texture lookup in the 
sphere map.  

Although sphere maps of the environment would be instantly 
available after capturing the mirrored sphere, we use cube maps 
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in the setups with two cameras. The reason is that with two 
cameras the camera for the real scene and camera for the 
environment map will look into different directions. Sphere 
maps are view dependent and must be taken from the same 
view direction as the camera which uses them for rendering. 
Cube maps are better suited for this task due to their view 
independency. 
2) Creating the Shadow Map:  

We generate the Shadow Map by rendering the scene and 
copy the depth buffer into a GL_DEPTH_COMPONENT 
texture. 
3) Creating the Shadow Buffer:  

The Shadow Buffer is created by rendering the scene from 
the point of view of the camera. To get the shadowing value for 
every pixel, a depth texture comparison has to be performed for 
every light source in the scene. The necessary texture 
coordinates are calculated in the vertex shader. 

Since only eight texture coordinate sets can be transfered 
from vertex to fragment shaders in common shader profiles, not 
all light sources can be calculated in one pass. On the contrary 
the Shadow Buffer is created in several passes with eight light 
sources each. The results of these passes are accumulated with 
additive blending (see Fig. 5). 

To get the color of the light source a higher mip level of the 
environment cube map is sampled. As texture coordinates the 
positions of the light sources are used. 

After all passes are finished, the Shadow Buffer is copied to 
a texture. 
4) Rendering with lighting and shadows:  

We render the scene from the point of view of the camera. 
The texture with the Shadow Buffer is projected so that it fills 
the whole screen. This is done by mapping from screen 
coordinates S (in the range [−1.0,1.0]) into texture coordinates 
T (in the range [0.0,1.0]): 

0.5 0.5.T S= ⋅ +  (5) 
 

VII.  RESULTS 
All the images and performance measurements in the 

following section were generated on an Intel Pentium IV with 3 
GHz and an nVidia GeForce 7800 GT graphics card with a 
screen resolution of 800×600. 

 
TABLE 1: FRAME RATES WITH DIFFERENT NUMBER OF SHADOWS. 
NOTICE THAT THE FRAME RATE SLOWS DOWN USING MORE THAN 
8 SHADOWS SIMULTANEOUSLY. 

Number of Shadows fps 
0 35 
8 32 
48 21 
64 15 

A. Performance Results 

Table 1 shows the frame rate of the same scene with different 
numbers of light sources. 

As more light sources result in more rendering passes during 

creation of the Shadow Buffer, performance if heavily affected.  

 
(a) 

 
(b) (c) (d) 

Fig. 6.  Comparison of renderings with different number of shadows. Image (a) 
is rendered with 8 shadows, (b) with 48 and for image (c) 64 shadows are used. 
See Color Plate 3. 

 
On the other hand, the quality of the shadow increases with 

more light sources, because the single shadows become 
invisible. Fig. 6 depicts a comparison of a scene with 8, 48 and 
64 shadows. 

B.  Rendering Results 

The proposed algorithm offers shadows which change 
dynamically under varying lighting conditions. Fig. 7 shows a 
scene with different lighting. A strong light source is located at 
the upper right of the scene. Note the changing in the shadows 
of the virtual cola can and the teapot. The real lighting affects 
the shadow casting of the virtual objects. The resulting 
shadows are very soft and appropriate to simulate the 
shadowing caused by environments with a large amount of 
indirect light and large light sources. 

If there is a small, bright light source in the environment, the 
shadows tend to be too soft (cf. Fig. 7(b)). The reason for this is 
that the virtual shadow is actually a combination of many 
shadows from fixed light sources. If a real light source is placed 
between two virtual light sources, the shadow is simulated by 
two or more blended virtual shadows, which causes a softening 
effect. 

Notice that in both setups (using the mirrored sphere or the 
fisheye lens), the reflection gets calculated wrong. Fig. 8(a)-(d) 
depict a scenario, where the marker, on which we placed the 
can, gets rendered wrong on the teapot’s surface. During our 
tests, we observed that people often do not recognize this effect. 
However, it will be recognized, once we go too close to the 
virtual object. Notice also that objects behind the camera are 
not seen by the fisheye lens. 
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(a) 

(b) 
Fig. 7.  The rendered scene under different lighting conditions. In (a) there is a 
strong light source at the upper right of the scene. (b) If the light source is 
relatively small, the virtual shadow ends up too soft. See Color Plate 4. 

 

VIII.   CONCLUTIONS AND FUTURE WORK 
The algorithm proposed in this work presents an Augmented 

Reality setup, where virtual objects are rendered 
photo-realistically adapted to the real environment. Our system 
is based on both vertex and pixel shaders to achieve interactive 
frame rates. In addition, we focused on the implementation of 
soft shadows. We allow the movement of light sources during 
run-time which results in a perceptually correct shadowing. 

In terms of future work, we want to investigate more 
advanced rendering techniques for simulating objects with 
different surfaces. Our results would also be improved by the 
combination of BRDF (used for the environment map) with 
high dynamic range images and occlusion mapping. A website 
featuring videos of this work introduced can be seen at 
http://www.officeoftomorrow.org. 

 

 
(a) (b) 

 
(c) (d) 

Fig. 8. If the light source is relatively small, the virtual shadow ends up too soft. 
In the reflection of the teapot in figures (a) and (b) the marker is visible on the 
left hand side, although in reality it is at the right hand side. In images (c) and (d) 
camera and object are at the same position, the reflection is therefore correct. 
See Color Plate 5. 
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