
The International Journal of Virtual Reality, 2006, 5(3):1-7 1

Image Based Shadowing in Real-Time
Augmented Reality

Peter Supan, Ines Stuppacher and Michael Haller

Abstract—This work presents an approach to render

appropriate shadows with Image Based Lighting in Augmented
Reality applications. To approximate the result of environment
lighting and shadowing, the system uses a dome of shadow casting
light sources. The color of each shadow is determined by the area
of the environment behind the casting light source. As a result it is
possible that changes in the lighting conditions immidiately affect
the shadow casting of virtual objects on real objects.

Index terms— Augmented Reality, Image Based Lighting,
Real-Time, Soft Shadows

I. INTRODUCTION
Photorealistic rendering in Augmented Reality (AR)

applications is still one of the most challenging research topics
in AR. Bimber et al. postulate in [1] a consistent lighting
situation between real and virtual objects to achieve a
convincing Augmented Reality application. Sugano et al. and
Madsen et al. underline the importance of consistent shadows
in an AR scenario [2, 3]. Shading and shadows in both worlds
must match to achieve a natural merge [4, 5]. Thus the shading
and the shadows of the virtual lights have to be consistent with
the real world. Agusanto et al. present in [6] the seamless
integration of virtual objects in an AR environment using
Image Based Lighting (IBL) techniques and environment
illumination maps. They postulate a consistent and a coherent
virtual world with respect to the real environment.

Image Based Lighting is an efficient technique to illuminate
objects with textures of the real environment [7]. It can be seen
as a combination of the techniques of Reflection Mapping [8]
and Illumination Mapping [9]. While Image Based Lighting
alone is well suited for real-time applications, problems arise
when it comes to shadowing. Casting shadows requires light
sources at distinct positions. Those are not available when
lighting is done with textures.

This paper describes a technique to generate shadows for
scenes lit with Image Based Lighting. The shadows are
sensitive to any changes in the ubiquitous lighting. If the light
source changes its size, the softness of the shadow adapts
accordingly.

Manuscript Received on October 11, 2006.
Peter Supan, Ines Stuppacher and Michael Haller are with Digital Media,

Upper Austria University of Applied Sciences, Hagenberg, Austria. Contact
E-mail: haller@fh-hagenberg.at

Moreover, the color of the shadow depends on the color of the
light source. Shadows add the level of realism to a rendered
image. As described in [5], shadows are a very essential factor
for the 3D impression of a scene. The seamless merging of the
virtual world and the real world is a challenging topic in current
Augmented (Mixed) and Virtual Reality research.

II. RELATED WORK
Fournier et al. were one of the first researchers, who

combined real video images with computer generated content
focusing on the problems of common viewing parameters,
common visibility, and common illumination [10]. Global
lighting models (e.g. progressive radiosity) are still not suitable
for AR applications, because they require a complete scene
description. Saito et al. present a method for measuring a
radiance distribution of the real scene [11]. By using an
omnidirectional stereo algorithm, they first create a geometric
model of the scene. The radiance of the scene is computed from
a sequence of omni-directional images taken with different
shutter speeds and mapped onto the constructed geometric
model. A similar algorithm is presented by Gibson et al. [12].
They use a large number of fixed pre-calculated light sources,
and allow rendering of impressive quality at interactive frame
rates. In contrast, Kakuta et al. [13] use a large amount of fixed
light sources to render objects under changing lighting
conditions. The objects are nevertheless pre-processed and
cannot be moved during run-time.

A large amount of research in Image Based Lighting is done
by Debevec [7, 14, 15]. He suggests a division of the
environment map in areas of equal integrated brightness to find
positions of virtual light sources for shadow creation in offline
rendering [16]. The achieved rendering results are more than
impressive. Nevertheless most of the results are not rendered in
real-time. Agusanto et al. demonstrate in [6] a real-time IBL
technique, where they mainly focus on improving lighting
results without taking into account shadows.

Only few researchers are focusing on real-time shadows for
AR-based scenerios [2, 5]. In our first prototype, we combined
shadows of real objects with virtual objects and vice versa
using shadow volumes [17]. However, shadow volumes seem
to be too complicated to be used for achieving good results with
high performance. Soft shadow maps in combination with
Image Based Lighting techniques seem to be a good way to
achieve better results. Karlsson and Selegard [18] integrated

The International Journal of Virtual Reality, 2006, 5(3):1-7 2

soft shadows in an AR scenario using IBL techniques.
However, they only allow one fixed shadow. Unlike previous
work, our system benefits from the following features:
- Seamless integration of a virtual scenario: Virtual and

real shadows always fall into the same direction with the
same color and intensity.

- Image Based Shadowing: Shadows are controlled by an
image of the environment. There are no limitations in the
number and shape of real light sources in the environment.

- Presentation of three setups: We demonstrate three
different AR scenarios using a single-camera setup with a
gazing sphere, and two multi camera setups combined
with a mirrored sphere and a fisheye lens for capturing the
environment.

- No pre-processed data: Our approach does not rely on
pre-processed data and thus allows changes of the light
situation and changing of object positions during runtime.
Nevertheless, this comes at the cost of higher
computation.

III. SETUPS
We implemented three different setups to test our approach

 (cf. Fig. 1). In the first scenario, we had a single-camera setup
in combination with a mirrored (gazing) sphere. The same
camera captures both the real scene and the mirrored sphere in
the scene. The sphere is in a fixed position relative to the origin
of the tracking system (e.g. ARToolKit) and is cropped out of
the video image.

The advantage of this setup is that we only have to use one
camera. Conversly, the resolution of the environment map
depends on the size of the mirrored sphere in the camera image.
Since both the marker and the mirrored sphere have to be
visible in the camera image at any time, the size of the sphere in
the camera image is often very small. As a result the resolution
of the sphere map is very low. Furthermore, it often happens
that the mirrored sphere gets out of the camera image, which
causes that the environment cannot be updated.

The second setup was a two-camera setup with a mirrored
sphere. One camera captures the real scene and the other (at a
fixed position) tracks the mirrored sphere. Since the mirrored
sphere is captured by a separate camera, it is not possible that
the sphere is outside of the camera image. Furthermore, the
resolution of the environment map does not depend on the
distance of the camera, since we always have the same distance
from the camera to the mirrored sphere. Notice that both
cameras have to be calibrated well, so that the environment map
matches the image of the scene camera. Otherwise the cameras
often have different white-balance and exposure setting which
usually causes a mismatch of lighting of real and virtual
objects.

Finally, in the third scenario, we used a two-camera setup in
combination with a fisheye lens (180°). The mirrored sphere is
replaced by the camera with the fisheye lens which captures the
real environment. Thus the setup becomes simpler and easier to

calibrate, since there is no mirrored sphere. However, a fisheye
lens usually has a smaller field of view than the mirrored sphere.
Consequently, a smaller part of the environment is visible in the
map.

(a)

(b)
Fig. 1. In picture (a) the setup with two cameras and a mirrored sphere is visible.
Notice that in the single-camera setup, we just use the left camera for tracking
both the environment and the mirrored sphere. Picture (b) shows the setup with
two cameras and a fisheye lens, which is simpler and faster to assemble. See
Color Plate 1.

IV. IMAGE BASED SHADOWING PIPELINE
An overview of our algorithm is depicted in Fig. 2.

Depending on the setup, the images of one or two cameras are
used as input to the pipeline. From these images the position of
the camera in world space is extracted. Moreover, the image of
the mirrored sphere is cropped and copied into a texture. This
texture, the Reflective Environment Map, is then blurred to
create a diffuse Irradiance Map. Since both the original
Reflective Environment Map and the Irradiance Map are in
Sphere Map format, they are converted to cube maps. In what
follows the resulting cube maps are used for lighting while
rendering the virtual objects.

The International Journal of Virtual Reality, 2006, 5(3):1-7 3

The specular lighting is realized with reflection mapping [8].
The diffuse lighting is done as described in [9], where the
surface normal of a point is used for a texture lookup into an
environment map. Shadowing is performed by creating a
reasonable amount of light sources around the scene which cast
shadows with shadow maps. Each of these light sources
determines its intensity and color from the area of the
environment map behind the light source, as seen in Fig. 3.

Fig. 2. Overview of the Image Based Shadowing pipeline. See Color Plate 2.

Fig. 3. The color of every light source depends on the average color of an area
of the Environment Map behind the light source.

Similar to environment mapping, we assume that the

environment is far away from the rendered scene. With this
assumption, we can ignore the distance of light-emitting areas,
which alleviates rendering. Our algorithm performs best when
we simulate soft shadows cast from relatively large direct or
indirect light sources far away in the environment. Our
approach although fails to simulate a hard shadow cast by point
lights or light sources located very near or inside the scene, due
to the limited number of light sources.

V. ALGORITHM
Our algorithm for shadowing a scenario is based on three

steps, which can be defined as follows:
1) Creating the Shadow Maps: We create the Shadow Map

by rendering the scene from the view of every light source
(in our setup we used up to 64 light sources simultaneously)
and storing the depth buffer in a separate texture. Since the
rendering of many shadow maps for each frame can
become very expensive, we only update one shadow map
(of only one light source) in each frame.

2) Creating the Shadow Buffer: Next, we create a texture
called Shadow Buffer containing the accumulated shadows
of all light sources. To create this texture we render the
scene from the view of the camera. The shadows of all
light sources are rendered and the results added (see
SectionⅤ (B)). The color of each shadow is determined by
the environment map (cf. Section Ⅴ(C)).

3) Rendering with the Shadow Buffer: Finally, we render the
scene from the point of view of the camera. The Shadow
Buffer created before is projected on the scene. At every
pixel the value stored in the Shadow Buffer is subtracted
from the diffuse lighting value of the pixel to realize
shadowing (see Section Ⅴ (D)).

A. Calculating the Shadow Maps

The scene is rendered from the view of the light source. The
color writing flag is disabled so that only depth values are
written into the buffer. Next, we copy the depth values to a
depth texture, where one depth texture is stored along with
every light source.

B. Calculating the Shadow Buffer

In step two of our algorithm, the shadow intensity of every
light source is determined. Fig. 3 shows a cross section of the
used scene. In theory each point P on the surface receives light
from every visible light source. This means that the incident
light on P equals the accumulated light from every light source
not casting a shadow on P. If the surface is lit by Lambert’s law,
the influence I of every light is calculated as follows

I C N L S= ⋅ • ⋅ , (1)

where C is the color of the light source, N is the normal of the
surface and L is the normalized vector from the rendered point
P to the light source. The shadowing factor S equals 0.0 if the
light casts a shadow on the rendered point and 1.0 if the point is
in light. The illumination IL on every point is therefore
calculated as the sum of all light intensities

0

n

i i
i

IL C N L
=

S= ⋅ • ⋅∑ , (2)

where n is the number of all light sources. In our application
there are objects which are already lit (e.g. the ground plane,
which receives shadows from virtual objects but does not
receive light from virtual light sources). To deal with these
objects, we do not calculate the radiance a point receives from
any light source but the radiance R a point does not receive
because of shadowing. R is determinded by calculating the
illumination as described in equation 2, but with inverted
shadowing factor S:

0

(1)
n

i i
i

R C N L S
=

= ⋅ • ⋅ −∑
 (3)

C. Acquiring the Light Color and Shadow Value

Notice that for equation 2 the color of the light source has to
be calculated. This color depends on the color of the area of the

The International Journal of Virtual Reality, 2006, 5(3):1-7 4

environment map behind the light source. To achieve it, we
simply ”downsample” the cube environment map to a low
resolution (4x4 or 8x8 texels per face as depicted in Fig. 4(c)).
As a result, every texel now ”contains the average” of all
surrounding texels in the original high resolution cube map
(like Fig. 4(b)). Now the positions of the light sources are set in
a way that every light source lies in the center of one cube map
texel (see Fig. 4(a)). The color of every light source is set to the
color of the texel behind it.

The shadowing factor S is the result of the Shadow Map
texture lookup and tells if a point is lit by the currently
calculated light source or if it is in shadow. In Fig. 3 and 4(a) S
is shown by the fill color of the light source symbols.

(a)

(b) (c)

Fig. 4. The final color of the light source is determined by performing a lookup
into a downsampled Cube Environment Map.

D. Combining Shadows and Lighting

Once the Shadow Buffer is ”finished”, the final lighting can
be realized. Specular lighting is calculated by performing a
lookup in the Reflective Environment Map at the direction of
the reflected eye vector. In contrast, diffuse lighting is
calculated by a lookup in the Irradiance Map at the direction of
the surface normal of the rendered point. The received value is
the amount of diffuse light the point receives if the whole
environment is visible.

The amount of light which does not receive the rendered
point, because it was blocked by another object, is stored in the
Shadow Buffer. This amount has to be subtracted from the
diffuse lighting value to achieve correct lighting, as illustrated
in Fig. 5. Thererfore, at every pixel, lighting is calculated as
follows:

()I d s sp= − + , (4)

where I is the light intensity, d is the calculated diffuse
lighting value, s is the value from the Shadow Buffer and sp is
the calculated specular lighting value.

In our setup, real object should not receive lighting but shall

receive shadows from virtual objects. We call these objects
Phantom Objects [19]. An example is the ground plane. For
these objects, the lighting calulations are omitted (because they
are already lit by real light). Finally, the value in the Shadow
Buffer is subtracted from the original color value to get the
impression of cast shadows (although correct results are only
achieved for diffuse objects).

Fig. 5. First the Shadow Buffer is created in several passes with eight light
sources each. Then the result is fed into the lighting pass and affects the diffse
lighting value.

VI. IMPLEMENTATION DETAILS
The algorithm described above is implemented in OpenGL

using the Cg shading language. It is split into several render
passes.
1) Environment map processing steps:

Cropping the Sphere Map: We render a quad with the video
image of the camera. The texture coordinates are chosen so that
only the picture of the mirrored sphere is visible.

Creating the Irradiance Map: We render a quad with the
Sphere Map and perform a seperable 2D-Gaussian blur on the
map.

Converting to cube maps: We convert the sphere maps to
cube maps by rendering six quads. Each quad corresponds to
one face of the Cube Map and each pixel of the quad becomes a
texel in the Cube Map. Notice that the texture coordinates of the
quads are chosen in a way that the texture coordinates of every
rendered pixel equal to the 3D-vector into space the Cube Map
texel will represent. In the fragment shader, this 3D-vector is
converted to a 2D-vector for a simple texture lookup in the
sphere map.

Although sphere maps of the environment would be instantly
available after capturing the mirrored sphere, we use cube maps

The International Journal of Virtual Reality, 2006, 5(3):1-7 5

in the setups with two cameras. The reason is that with two
cameras the camera for the real scene and camera for the
environment map will look into different directions. Sphere
maps are view dependent and must be taken from the same
view direction as the camera which uses them for rendering.
Cube maps are better suited for this task due to their view
independency.
2) Creating the Shadow Map:

We generate the Shadow Map by rendering the scene and
copy the depth buffer into a GL_DEPTH_COMPONENT
texture.
3) Creating the Shadow Buffer:

The Shadow Buffer is created by rendering the scene from
the point of view of the camera. To get the shadowing value for
every pixel, a depth texture comparison has to be performed for
every light source in the scene. The necessary texture
coordinates are calculated in the vertex shader.

Since only eight texture coordinate sets can be transfered
from vertex to fragment shaders in common shader profiles, not
all light sources can be calculated in one pass. On the contrary
the Shadow Buffer is created in several passes with eight light
sources each. The results of these passes are accumulated with
additive blending (see Fig. 5).

To get the color of the light source a higher mip level of the
environment cube map is sampled. As texture coordinates the
positions of the light sources are used.

After all passes are finished, the Shadow Buffer is copied to
a texture.
4) Rendering with lighting and shadows:

We render the scene from the point of view of the camera.
The texture with the Shadow Buffer is projected so that it fills
the whole screen. This is done by mapping from screen
coordinates S (in the range [−1.0,1.0]) into texture coordinates
T (in the range [0.0,1.0]):

0.5 0.5.T S= ⋅ + (5)

VII. RESULTS
All the images and performance measurements in the

following section were generated on an Intel Pentium IV with 3
GHz and an nVidia GeForce 7800 GT graphics card with a
screen resolution of 800×600.

TABLE 1: FRAME RATES WITH DIFFERENT NUMBER OF SHADOWS.
NOTICE THAT THE FRAME RATE SLOWS DOWN USING MORE THAN
8 SHADOWS SIMULTANEOUSLY.

Number of Shadows fps
0 35
8 32
48 21
64 15

A. Performance Results

Table 1 shows the frame rate of the same scene with different
numbers of light sources.

As more light sources result in more rendering passes during

creation of the Shadow Buffer, performance if heavily affected.

(a)

(b) (c) (d)

Fig. 6. Comparison of renderings with different number of shadows. Image (a)
is rendered with 8 shadows, (b) with 48 and for image (c) 64 shadows are used.
See Color Plate 3.

On the other hand, the quality of the shadow increases with

more light sources, because the single shadows become
invisible. Fig. 6 depicts a comparison of a scene with 8, 48 and
64 shadows.

B. Rendering Results

The proposed algorithm offers shadows which change
dynamically under varying lighting conditions. Fig. 7 shows a
scene with different lighting. A strong light source is located at
the upper right of the scene. Note the changing in the shadows
of the virtual cola can and the teapot. The real lighting affects
the shadow casting of the virtual objects. The resulting
shadows are very soft and appropriate to simulate the
shadowing caused by environments with a large amount of
indirect light and large light sources.

If there is a small, bright light source in the environment, the
shadows tend to be too soft (cf. Fig. 7(b)). The reason for this is
that the virtual shadow is actually a combination of many
shadows from fixed light sources. If a real light source is placed
between two virtual light sources, the shadow is simulated by
two or more blended virtual shadows, which causes a softening
effect.

Notice that in both setups (using the mirrored sphere or the
fisheye lens), the reflection gets calculated wrong. Fig. 8(a)-(d)
depict a scenario, where the marker, on which we placed the
can, gets rendered wrong on the teapot’s surface. During our
tests, we observed that people often do not recognize this effect.
However, it will be recognized, once we go too close to the
virtual object. Notice also that objects behind the camera are
not seen by the fisheye lens.

The International Journal of Virtual Reality, 2006, 5(3):1-7 6

(a)

(b)
Fig. 7. The rendered scene under different lighting conditions. In (a) there is a
strong light source at the upper right of the scene. (b) If the light source is
relatively small, the virtual shadow ends up too soft. See Color Plate 4.

VIII. CONCLUTIONS AND FUTURE WORK
The algorithm proposed in this work presents an Augmented

Reality setup, where virtual objects are rendered
photo-realistically adapted to the real environment. Our system
is based on both vertex and pixel shaders to achieve interactive
frame rates. In addition, we focused on the implementation of
soft shadows. We allow the movement of light sources during
run-time which results in a perceptually correct shadowing.

In terms of future work, we want to investigate more
advanced rendering techniques for simulating objects with
different surfaces. Our results would also be improved by the
combination of BRDF (used for the environment map) with
high dynamic range images and occlusion mapping. A website
featuring videos of this work introduced can be seen at
http://www.officeoftomorrow.org.

(a) (b)

(c) (d)

Fig. 8. If the light source is relatively small, the virtual shadow ends up too soft.
In the reflection of the teapot in figures (a) and (b) the marker is visible on the
left hand side, although in reality it is at the right hand side. In images (c) and (d)
camera and object are at the same position, the reflection is therefore correct.
See Color Plate 5.

REFERENCES
[1] O. Bimber, A. Grundhoefer, G. Wetzstein and S. Knoedel. Consistent

illumination within optical see-through augmented environments, In:
IEEE/ACMInternational Symposium on Mixed and Augmented Reality
(ISMAR 2003), IEEE Computer Society, pp.198–207, 2003.

[2] N. Sugano, H. Kato and K. Tachibana, The effects of shadow
representation of virtual objects in augmented reality, In: IEEE/ACM
International Symposium on Mixed and Augmented Reality (ISMAR
2003), IEEE Computer Society, pp.76–83, 2003.

[3] C. B. Madsen, M. K. D. Sørensen and M. Vittrup. The importance of
shadows in augmented reality, In: Proceedings: 6th Annual International
Workshop on Presence, Aalborg, Denmark, 2003.

[4] T. Naemura, T. Nitta, A. Mimura and H. Harashima. Virtual Shadows -
Enhanced Interaction in Mixed Reality Environment, In: IEEE Virtual
Reality (VR’02), 2002.

[5] T. Naemura, T. Nitta, A. Mimura and H. Harashima. Virtual shadows in
mixed reality environment using flashlight-like devices, Trans. Virtual
Reality Society of Japan, vol. 7, no. 2, pp. 227–237, 2002.

[6] K. Agusanto, L. Li, Z. Chuangui and N. W. Sing. Photorealistic rendering
for augmented reality using environment illumination, In: IEEE/ACM
International Symposium on Mixed and Augmented Reality (ISMAR
2003), IEEE Computer Society, pp.208–216, 2003.

[7] P. Debevec. Image-based lighting, IEEE Computer Graphics and
Applications 22, pp.26–34, 2002.

[8] J. Blinn and M. Newell. Texture and reflection in computer generated
images, In: Communications of the ACM, vol. 19, no. 10, pp.542–547,
1976.

[9] G. S. Miller and C. R. Hoffman. Illumination and reflection maps:
Simulated objects in simulated and real environments, In: Course notes
for Advanced Computer Graphics Animation, SIGGRAPH 84, 1984.

[10] A. Fournier, A. S. Gunawan and C. Romanzin. Common illumination
between real and computer generated scenes. Technical report,
Vancouver, BC, Canada, Canada, 1992.

http://www.officeoftomorrow.org/

The International Journal of Virtual Reality, 2006, 5(3):1-7 7

[11] I. Sato, Y. Sato and K. Ikeuchi. Acquiring a radiance distribution to
superimpose virtual objects onto a real scene. IEEE Transactions on
Visualization and Computer Graphics, vol.5, no.1, pp.1–12, 1999.

[12] S. Gibson, T. Howard and R. Hubbold. Rapid shadow generation in
real-world lighting environments, In: Proceedings of the Eurographics
Symposium on Rendering, 2003.

[13] T. Kakuta, T. Oishi and K. Ikeuchi. Shading and shadowing of
architecture in mixed reality, In: Proceedings of ISMAR 2005, 2005.

[14] E. Reinhard, G. Ward, S.Pattanaik and P.Debevec. High Dynamic Range
Imaging. 1. edn. Morgan Kaufmann, 2006.

[15] P. Debevec, C. Tchou, A. Gardner, T. Hawkins, C. Poullis, J. Stumpfel,
A. Jones, N. Yun, P. Einarsson, T. Lundgren, M. Fajardo and P. Martinez.
Estimationg surface reflectance properties of a complex scene under
captured natural illumination, Technical Report ICTTR-06.2004,
University of Southern California Institute for Creative Technologies
Graphics Laboratory, 2004.

[16] P. Debevec. A median cut algrithm for light probe sampling, Technical
Report 67, USC Institute for Creative Technologies , 2005.

[17] M. Haller, S. Drab, W. Hartmann and J. Zauner. A real-time shadow
approach for an augmented reality application using shadow volumes, In:
ACM Symposium on Virtual Reality Software and Technology, Tokyo,
Japan, 2003.

[18] J. Karlsson and M. Selegard. Rendering realistic augmented objects using
an image based lighting approach, Master’s thesis, Linkpings Universitet,
Department of Science and Technology, Sweden, 2005.

[19] A. Fuhrmann, G. Hesina, F. Faure and M. Gervautz. Occlusion in
collaborative augmented environments, Computers and graphics, vol. 23,
no.6, pp.809-819, 1999,
http://www.cg.tuwien.ac.at/research/vr/occlusion

Peter Supan is a researcher at the department Digital
Media of the Upper Austria University of Applied
Sciences, Austria. His research interests include
augmented and virtual reality, real-time computer
graphics, real-time rendering with a special focus on
real-time shadows, and multimodal human-computer
interaction. Supan received a MSc. in engineering from
the Upper Austria University of Applied Sciences,
Austria. Contact him at peter.supan@fh-hagenberg.at.

Ines Stuppacher is a researcher at the department
Digital Media of the Upper Austria University of
Applied Sciences, Austria. Her research interests
include real-time computer graphics and rendering,
multimodal human-computer interaction, games, and
augmented and virtual reality. Stuppacher received a
MSc. in engineering from the Upper Austria University
of Applied Sciences, Austria. Contact her at
ines.stuppacher@fh-hagenberg.at.

Michael Haller is a researcher developing innovative
computer interfaces that explore how virtual and real
worlds can be merged to enhance and improve computer
systems. Currently, he is working at the department of
Digital Media of the Upper Austria University of
Applied Sciences and responsible for computer graphics,
multimedia programming, and augmented reality. In
2004, he received the Erwin Schroedinger fellowship
award presented by the Austrian Science Fund for his

stay at the HITLabNZ, University of Canterbury (New Zealand) and the IMSC,
University of Southern California (USA). Contact him at
haller@fh-hagenberg.at

http://www.cg.tuwien.ac.at/research/vr/occlusion
mailto:peter.supan@fh-hagenberg.at
mailto:ines.stuppacher@fh-hagenberg.at
mailto:haller@fh-hagenberg.at

	I. INTRODUCTION
	II. RELATED WORK
	III. SETUPS
	IV. IMAGE BASED SHADOWING PIPELINE
	V. ALGORITHM
	VI. IMPLEMENTATION DETAILS
	VII. RESULTS
	VIII. CONCLUTIONS AND FUTURE WORK

