
Components for virtual environments

Michael Haller, Roland Holm, Markus Priglinger, Jens Volkert, and Roland Wagner
Johannes Kepler University of Linz

Altenbergerstr 69
A-4040 Linz (AUSTRIA)

[mhallerjrwagner]@faw:uni� linz:ac:at

[jv]@gup:uni� linz:ac:at

Abstract

In this paper we describe how it is diÆcult to design
virtual environments. We present an approach of
a model for the design of a virtual world using a
construction kit metaphor, and �nally we show a
virtual training environment (SAVE), which uses
the presented methods.

1 Introduction

The design of virtual environment and virtual re-
ality applications is a challenging task. While 2D
WIMP interfaces often build on previous experi-
ences with other applications through the use of
common interaction elements (widgets) and the
building of an appropriate mental model of the ap-
plication through repeated use, these information
sources are often unavailable for 3D interface de-
signers due to the lack of standards. There is lit-
tle knowledge about how virtual environments are
designed, what issues need to be addressed, and
little guidance about how design should be car-
ried out [3]. Previous work has mainly focused on
technical issues, such as improving runtime perfor-
mance. But looking for better performance, which
is of course a must for virtual environments, many
developers do not look at the good design of the ap-
plication in respect to the reusability. Essentially,
the goal of this project is to develop a generic set of
tools and a support strategy that will provide users
with the means to create virtual environments - in
a cost-e�ective as possible and deliver to low-end
machines. The aim of this project is to develop
methods and components that can be used to im-

prove the design of interfaces for a virtual environ-
ment. In fact, our system is comparable with the
principle of a LEGO kit box: the users can pick dif-
ferent simple components out of a repository and
build their own complex environment. With our
toolkit-components we o�er a generic description
of the de�nition for a virtual world. Our descrip-
tion of the virtual environment is very formal (it
is based on VRML 97) and complete (even depen-
dencies of objects can be de�ned). Obviously, the
very nature of virtual environments contributes to
the diÆculty of describing and modeling interac-
tions. Typically, they are a collection of static and
dynamic components and they have a non-linear
process and control 
ow. One of the most impor-
tant questions and problems of this work is how the
discrete event-based elements and the visual com-
ponents of interaction can be expressed.

2 Design constraints and
problems of virtual environ-
ments

One of the supreme aims of virtual reality and par-
ticularly in the virtual environment is the near re-
ality cover. More realism can be reached with more
interaction possibilities and more detailed environ-
ment. However, a number of constraints prevent
the solution from more realism:

� machine constraints, e.g. render power limit
the complexity of the 3D environment

� technological constraints

1



� human constraints for the creation of usable
and more intuitive interfaces.

A general problem with the construction of vir-
tual environments consists in the complexity of
modeling and implementation. Therefore, di�erent
design methods and tools are necessary.
Of course, an expansion of the system should

be possible. Monolithic systems are diÆcult to
maintain and the opinion that hard coded and ma-
chine adapted C based applications are faster, is
unsteady. As in the software development with
components, it also must be possible with VEs to
add new functions by installing new elements.

3 Design of virtual environ-
ments

As in the software development with components,
it also must be possible with virtual environments
to add new functions by installing new elements. In
this paper a new system, the Component Oriented
Virtual Environment System, will be presented.
The central element in COVES is a mechanism,
which is responsible for the component communi-
cation network. In fact, complex virtual environ-
ments are presented by simple, small units (compo-
nents or nodes). Several advantages are connected
to such a division:

� Flexibility : All elements can be combined in
arbitrary order.

� Reusability : A component can be used in var-
ious con�gurations.

� Extensibility : If the system has a programming
interface, arbitrary extensions can be made. If
the components for a task are not implemented
and installed, they have to be integrated as
needed.

� Communication: If suitable interfaces are of-
fered, the components can communicate with
each other and use the common resources.

4 Approach

Our goal was to provide a very 
exible system.
Therefore, we used an object-oriented design to

make the system more 
exible and more readily un-
derstandable and extensible. The object-oriented
concepts such as inheritance, polymorphism and
dynamic binding provide a more compact and clear
structure of the speci�cation of complex systems,
e.g. virtual environments. Moreover, the architec-
ture has an event-driven design because the execu-
tion of logic occurs as result of an event being trig-
gered. Thus, execution 
ow is as dependent upon
the event model as data 
ow. The system resulting
from this approach is more robust, more eÆcient,
and easier to understand. The interesting facet of
our system is the use of reusable modular compo-
nents that can be linked at compile time to form a
tailored system.

The core of the system is the repository of the
components, where the structure of the di�erent
nodes is de�ned. In our virtual world all the com-
ponents are described with prototype nodes based
on VRML 97 speci�cation, which helps the user to
manage scene complexity by providing a method
for de�ning higher level objects. We extended the
VRML standard with our own prototypes, which
describe the di�erent dynamic objects of the vir-
tual world, cf. lever, switch, lamp, spindle etc. All
components or nodes have input slots (de�ned as
eventIn), output slots (de�ned as eventOut), and
parameters (fields), which allow a closer descrip-
tion of the object (see �gure 1). The prototype
nodes pretend an exact description of what has to
be de�ned. Default values of the prototype are
taken, if they are not be described and rede�ned.
It corresponds to a repository or to a container of
components, which de�ne the di�erent virtual ob-
jects.

Figure 1: A node consists of di�erent input slots
and output slots

2



In the repository exist di�erent types of compo-
nents:

Graphical components represent a graphical
object in the virtual world.

Functional components , cf. AND, OR, NOT,

PLUS, f(x), etc., which are used to connect
the graphical components and to extend their
functionality.

The next example shows the PROTO of the
graphical object VRLever used in our virtual en-
vironment.

PROTO VRLever [

eventIn SFBool set_value

eventOut SFBool value_changed

field SFNode case NULL

field SFNode lever NULL

field SFFloat leverDistance 0.1

]

{

}

All components represent an individual entity of
the appropriate type. Obviously, no two base nodes
represent the same entity and for all the compo-
nents of the repository we provide a corresponding
implemented class in our system. Proceeding these
components, the user describes the virtual world in
a scene description �le using the prototypes of the
repository. Finally, users can de�ne dependencies
and connect the components together. In fact, our
components can be connected to each other by la-
belled, directed arcs. Again, based on VRML 97
we used the ROUTE functionality.
At the moment we are designing two di�erent

modeling tools, where the users should have a
graphical programming interface for an environ-
ment which can be modeled more easily. Once
de�ned the scene description �le, our system gen-
erates the the virtual world - it generates the Per-
former scene-graph and maps the routing comman-
dos in an internal network.
Most node types have at least one eventIn de�-

nition and thus can receive events. Incoming events
are data messages sent by other nodes to change
their state within the receiving node. Some nodes
also have eventOut de�nitions. These are used to
send data messages to destination nodes that some

state has changed within the source node. Once
a component has generated an initial event, the
event is propagated from the eventOut producing
the event along any ROUTE to other nodes. These
other nodes may respond by generating additional
events, continuing until all routes have been hon-
oured. Event noti�cations are propagated from
sources to listeners by the corresponding method
invocations on the target listener objects. Each
event source can have multiple listeners registered
on it. Conversely, a single listener can register with
multiple event sources. The node concept allows
to add behaviors to the scene. All nodes contain
programmatic logic that translates and propagates
input events into output events. By routing events
from the output slots of a node to the input slots of
another node, customized functionality and depen-
dencies can be realized, e.g. if a switch has been
switched on, a lamp lights, etc.
With the listener concept our system becomes

very 
exible. With the di�erent nodes and their
corresponding slots we can de�ne any imaginable
virtual environment and de�ne di�erent scenarios,
where dependencies of the dynamic objects can be
de�ned. The node concept is so 
exible, that it
has also been adapted for the input devices, such
as tracking devices and button input devices. A
class with the physical description (driver) and a
logical class for the internal node presentation is
integrated in the node network.

5 SAVE (= SAfety Virtual
Environment)

SAVE (SAfety Virtual Environment) is a Virtual
Reality based safety training system for dangerous
and hazardous facilities. The Institute for Applied
Knowledge Processing (FAW) and the Department
for Graphics and Parallel Processing (GUP) started
in 1997 with the �rst prototype for a virtual train-
ing environment for an Austrian re�nery [2, 1]. It is
a multi purpose virtual reality software system that
is mainly intended for employee training. SAVE
was designed to use HMD technologies and demon-
strated the possibilities of VR for safety training.
SAVE is based on the technologies described above
and supports

� real-time collision detection,

3



� simulation of dynamic behaviours of the ob-
jects,

� dynamic interactions between the user and the
objects,

� interaction of the trainer, who can interact in
the virtual scene and manipulate the objects,
e.g. change the state of the valve.

The SAVE system o�ers a solution for these
problems. It provides a framework and software
system for a variety of training scenarios using VR
technology. Each virtual training scenario com-
prises a scene in which the trainee can move freely
and interact with objects like pumps, valves, and
other control devices. omVR is the �rst application
of the SAVE system, which provides an advanced
technique for personnel safety training in re�ner-
ies. It is based on the architecture described above
and uses the components for the di�erent virtual
elements.

Figure 2: SAVE (SAfety Virtual Environment) is
an VR application for safety training in a virtual
re�nery

The omVR training system consists of two major
parts:

The scene simulator : This application runs on
a graphics workstation and creates the user's
view of the whole training scene. It also han-
dles all interaction between the trainee and the
objects in the scene, like switches, levers, tools,
etc. Since every head movement is tracked us-
ing a tracking system, the application renders

a new image corresponding to the trainee's
viewpoint in the scene on every move, creating
a strong immersive e�ect - after several min-
utes, the trainee believes to be inside the scene.

The trainer application : This program is used
by the trainer to observe the whole training
process and runs on a di�erent machine, linked
to the graphics workstation using a network
connection. The trainer can control any part
of the scene and react on the trainee's actions.
Moreover, it allows to manage the trainee's
training progress using a database, which al-
lows individual training.

One of the most important aspects of our appli-
cation is that the virtual environment of the trainee
can be controlled by the education/training pro-
gram. In fact, this relationship between the educa-
tion/training program and the simulation/trainee
program is the central idea of this educational sys-
tem.

6 Conclusions

As Smith, Duke, and Massink [4] note, virtual en-
vironments are a mix of continuous and discrete
components. What has been presented in this pa-
per is an initial research for a framework with com-
ponents for a virtual environment. The results
have been realized in a re�nery virtual environ-
ment, which used the di�erent components. The
next steps of the project is to de�ne tools, which
provide a very user friendly interface for assembling
the components to a virtual environment. There
are planned tools, where the user can choose of a
huge pot of graphical and logical components which
can be connected together. Doing so, the user cre-
ates his own virtual environment, which can be
used for a new safety training.

References

[1] M. Haller, R. Holm, J. Volkert, and R. Wag-
ner. A VR based safety training system in
a petroleum re�nery. In Proc. of Eurograph-

ics'99, pages 5{7, Milano, September 1999. 20th
Annual Conf. of the European Association for
Computer Graphics.

4



[2] M. Haller, G. Kurka, J. Volkert, and R. Wag-
ner. omVR - A Safety Training System for a
Virtual Re�nery. In Proc. of ISMCR'99, num-
ber Vol. X, pages 291{298, Japan, June 1999.
Topical Workshop on Virtual Reality and Ad-
vanced Human-Robot Systems.

[3] Kulwinder Kaur. Designing Virtual Environ-

ments for Usability. PhD thesis, Centre for
Human-Computer Interface Design, 1998. 241
pages.

[4] Shamus Smith, David Duke, and Mieke
Massink. The hybrid world of virtual envi-
ronments. In Proc. of Eurographics'99, pages
297{307, Milano, September 1999. 20th Annual
Conf. of the European Association for Com-
puter Graphics.

5


