
Pen and Paper Techniques for Physical Customisation of Tabletop Interfaces

Author(s) Name(s)
Author Affiliation(s)

E-mail

Abstract

An advantage of physical interfaces over graphical
widgets is that they bring controls closer to hand.
VoodooSketch is a system that supports dynamic
customisation of tabletop interfaces with physical
controls that users can arrange on palettes. The system
employs pen and paper techniques to achieve two
novel capabilities: first, users are able to sketch
controls that are immediately operational for pen
interaction; second, users can label the controls with a
handwritten name that identifies their function and
binds the control to an application. This paper
presents the results of an empirical evaluation of the
VoodooSketch interface customisation techniques. The
main findings of the study are: that users are able to
easily create sketched controls; that they can use them
as effectively as traditional input devices; that
handwritten labelling is more efficient for control
mapping than conventional screen-based methods; and
that the sketched controls improve user performance
and reduce error rates.

1. Introduction

Physical controls have an advantage over graphical
interface widgets in that they do not compete for screen
space, cannot become hidden under other windows,
and are more directly accessible to the user. Previous
work has demonstrated the feasibility of customising
graphical interfaces with physical controls that users
can bind at run time to conventional applications [4].
Lightweight physical customisation allows users to
create shortcuts to frequently-used controls, brings
tools and functions closer to hand for a given task, and
facilitates more efficient and precise input [17].

Customisation with physical controls can be
particularly useful for tabletop interaction. Tabletop
interfaces involve larger graphical surfaces on which
control widgets conventionally arranged in toolbars
can be difficult to reach, specifically in the context of
multi-user interaction. A common strategy is to

replicate graphical toolbars that users can position and
re-orient for round-the-table interaction [14].
VoodooSketch presents an alternative strategy through
the idea of physical customisation. As previously
reported, the system allows users to dynamically create
and arrange controls on physical palettes that can be
conveniently positioned and moved over the larger
graphical surface [2]. Users can adapt physical palettes
of arbitrary shape and size, ‘plug in’ physical control
devices, draw controls for pen-based interaction, and
label adapted controls with a name that identifies their
function and creates a corresponding application
binding (illustrated in Figure 1). The result is an
interface that it is very flexible – both in terms of ad
hoc tailoring of functions for direct physical access,
and also in terms of mobility and dynamic arrangement
of physical palettes over the tabletop.

This paper investigates in more depth the digital pen
and paper customization techniques that are part of
VoodooSketch. We report on a set of studies that
analyse three issues: how intuitive and easy to learn
sketching and handwritten labelling of controls are for
interface adaptation; how efficient labelling is for

Figure 1. A tabletop interface augmented with
physical palettes on which controls can be
created and bound on the fly. The close-up
shows an ad hoc assembly of controls for a
Photoshop task

control mapping in comparison with on-screen
methods; and how well users perform with sketched
controls. The studies provide empirical evidence that
the techniques are usable and effective. They show in
particular that pen and paper controls, even in a rough
sketched form, can be used as effectively as traditional
control devices, and that handwritten labels are not
only a fast method for mapping but also help reduce
the error rate with adapted controls.

2. Related Work

The use of physical devices for interaction on
tabletops has been demonstrated in a wide range of
work, from tangible user interfaces to augmented
reality surfaces [8, 3]. This research highlights the
advantages of physical controls for tangible interaction
with graphical simulations [16], for multi-user
interaction around the table [3], and for precise user
input on interactive surfaces [12]. The mapping of
physical controls, however, is usually application-
specific. The principal idea of VoodooSketch, in
contrast, is to support end-user adaptation of generic
physical controls, as a shortcut to tools and functions in
tabletop applications.

Greenberg and Boyle were the first to discuss end-
user customisation of conventional GUI applications
with physical interfaces [4]. They introduced a ‘widget
picker’ method for direct selection of a widget in the
GUI, triggering a dialogue through which functions
associated with the widget could be selected from a list
and mapped to a physical device. VoodooSketch
likewise supports spontaneous binding of physical
controls that are immediately usable (without ‘re-
booting’ the application), but provides handwritten
labelling as a different end-user technique for control
mapping. This is a conceptual difference, as it focuses
adaptation on definition of the function of a newly
added control, rather than on selection of a proxy for a
graphical control. This is also a practical difference, as
the customisation occurs off-screen by direct
annotation of a control rather than on-screen by
selection from a menu. In this paper, we specifically
examine whether direct annotation with a handwritten
label is more efficient than on-screen control mapping.

Customisable physical interfaces have also been
investigated in systems that focus on rapid prototyping
across the physical and digital aspects of digital
products, including d.tools [7] and VoodooIO [15,17].
These systems provide tools for dynamic assembly of
the physical controls of an interactive product, and for
their mapping to simulations of target functionality.
However, control mapping in this context is for design
rather than customisation, and is supported by code

editors rather than by techniques for end-user
adaptation at run time.

Sketching of interfaces has also been widely
investigated, although the work has focused on
enabling designers to produce rough sketches of an
interface that at a later stage can be translated into an
operational interface [9]. Sketching is generally
considered to be the preferred preliminary capture
process for designers because it provides a quick and
easy way to externalise design ideas [13]. This has
inspired much follow-on research into interactive
sketching as a design tool, including the combination
of sketching with physical prototyping for interactive
product design [11]. In contrast to interface sketching
for design, VoodooSketch introduced sketching as an
end-user technique for on-the-fly creation of controls
that are immediately usable for interaction. In this
paper we investigate the ease of use of the technique as
well as the usability of sketched controls for
interaction.

Digital pen and paper techniques have also been
studied more widely, from early visionary work on
fluid transition between paper and digital media [18] to
infrastructures for documents that can be manipulated
in digital as well as in paper form [5]. Commercially
available technologies such as Anoto now support
capture and wireless transmission of handwriting in
real time [1], and the synchronous interaction between
pen, paper and computer can be used to create paper
interfaces that control an application. This has spurred
development of pen and paper interfaces, for instance
for a digital scrapbook [19], and for annotation of
digital documents using printouts as proxies [10]. Our
work differs from this research in that we do not focus
on leveraging printed material, but on facilitating
customisable off-screen control of applications.

3. The VoodooSketch System

The VoodooSketch system was originally
introduced in earlier work [2]. As context for the
empirical studies we report below, we summarise the
main concepts and components of the system.

Interface palettes and pen interaction.

VoodooSketch augments an interactive tabletop with
one or more interface palettes which are physically
separate from the underlying tabletop surface. Initially,
palettes are empty. A special pen can be used to draw
on the palette surface with real ink and to digitally
interact with the graphical tabletop surface (see Fig. 2,
augmented tabletop is based on [6]).

Interface Composition, Configuration and Usage. A
user can instantiate physical controls and/or sketched
controls on the palettes. As shown in Figure 3 (1a),
physical controls are added by inserting plug-in
devices from a toolkit (e.g., a slider) that become
networked via conductive sheets embedded in the
palette, while sketched controls are created by drawing
an arbitrary closed shape (e.g., a rectangle, see Fig. 3,
1b). To give meaning to a new control, the user labels
it by writing the name of a function. This process is
identical for sketched and physical controls (see Fig. 3,
2a & 2b). The system detects the handwriting and finds
the appropriate function in the function pool of the
application that is active on the tabletop. Once a
control is labelled, its input is linked to that function.

Physical controls are directly manipulated by hand
(see Fig. 3, 3a) and produce a defined value (e.g.,
scalar output for sliders), which is forwarded to the
associated application function (e.g., opacity of an
object). The sketched controls are operated with the
pen, and show different behaviours depending on
which function they are associated with. If the function
is binary (e.g. “Save”), tapping the control with the pen
invokes the action; if the function requires scalar input,
the longer side of the shape is taken as an axis and the
pen can be moved along this axis in a slider-like
fashion. Pen interaction leaves permanent traces in the
shape but this does not disturb the operation of the
underlying tracking technology (see Fig. 3, 3b).

4. Empirical Evaluations

We have conducted four studies to evaluate the pen
and paper techniques for interface customisation. The
first study tested the accuracy of the sketch-and-
handwriting recognition engine; the second tested the
time needed to associate controls with application
functions, in comparison with list selection; the third
tested the benefit of having labels beside the adapted
controls; and the fourth assessed the performance of

sketched controls in actual tasks, in comparison with
physical controls and keyboard.

In all four studies, participants were recruited from
a local university, and all had extensive experience
with mouse-and-windows software. The studies used
either Photoshop CS2 or custom-built C# applications,
and were run on a Toshiba Qosmio notebook with a
dual-core 1.83 GHz Centrino processor, 2GB RAM,
and an nVidia 7600 display card. Two of the studies
(second and fourth) used a 1024×768 top-projected
table display. The table was 120cm×85cm, and was
covered with Anoto paper. All interaction was carried
out through an Anoto pen as a digital input device. The
other studies used the standard laptop screen, at
1440×900 resolution.

4.1. Recognition Accuracy

The goal of the first study was to determine how
accurate the recognition engine was for component
sketches and associated handwritten labels. Twelve
participants who were new to the recognition system
(five male, seven female) were each asked to draw
three sets of 10 component/label pairs, and the error
rate was recorded. The users could draw arbitrary
closed shapes but the label was different for each set
and was prompted to the user via a monitor. An error
occurred when the system did not detect a closed shape
or when the system did not detect the prompted label
(so one trial could produce 2 total errors). In the first
set of trials, the mean error rate in recognition was 0.17
(approximately one trial in six); this improved by the
third set to 0.09 (less than one in ten). From our own
use of the system, it is clear that this trend continues -
our own experience is that the recognizer very rarely
makes errors for experienced users. Based on these

Figure 2. A hybrid pen writes with real ink on
the palette surface and acts as digital input
on the augmented tabletop (which is covered
with an ink-repellent layer)

Figure 3. Composition, configuration and
usage of controls on an interface palette

results, and because we did not have time to train the
system for each of the participants in the next studies,
the experimenter in these studies controlled the
recognition engine and ensured that the user’s input
was correctly interpreted. This methodology allowed
us to compare techniques without requiring extensive
training; it is important to note, however, that
participants worked normally with the system and were
not aware of this experimenter control.

4.2. Creating and Mapping Controls

The goal of the second study was to compare the
time required for different methods for creating new
controls and mapping them to application functions.
We tested three types of controls (paper sketches,
VoodooIO physical controls, and keys on a standard
keyboard), and two association mechanisms
(handwritten annotation with labels and on-screen
selection from a list). List selection was chosen as a
reference mechanism, as it is common for control
mapping in commercial software (e.g., Photoshop) and
existing customisable physical interfaces [6, 25].

The study involved twelve participants (5 male, 7
female), and was carried out using Photoshop CS2 on
the top-projected table (see description above).

4.2.1. Design. The study used a 3x2x2 factorial design
with three factors:

• Interface (Sketch, VoodooIO, or Keyboard)
• Association Technique (Annotation or List)
• Trial (first or second trial with same component)

Since the combination of Annotations and

Keyboard could not be tested, we set up the study as
two separate designs: one that focused on the effects of
Association technique, and one that tested the effects
of Interface. The dependent measure in all cases was
task completion time.

4.2.2. Procedure. Participants were introduced to the
interface and the concept of adaptable interfaces, and

then carried out a five-minute training session, in
which they practiced associating basic commands in
Photoshop. They then carried out test trials in each of
the five conditions; their task was to construct a small
interface from a template (Fig. 4). In two conditions,
sketched and physical controls were configured with
the demonstrated labelling mechanism (Fig. 3) and in
another two by selecting from an on-screen list (Fig 5).
The list pops up automatically once a new control is
detected. The fifth condition was to associate keyboard
shortcuts with Photoshop’s standard key-binding
dialogue. Before each different interface, participants
were given a demonstration of that condition.
Participants carried out each task twice in succession.
The order of conditions was balanced using a Latin
square design.

The target interfaces each contained four buttons
and one linear control (slider or dial). Since there is no
linear control on the keyboard, this was replaced with
two buttons for increasing and decreasing the value of
the appropriate function. The functions that
participants had to associate were the same for the two
trials within each condition, but were changed between
conditions. In all of the List association conditions,
participants used the standard Photoshop list of
commands for the standard palettes (e.g., brush, pencil,
eraser); this list contains 65 items. Items were chosen
to require an equal amount of scrolling and were
organized to match the order of the on-screen list, so
that participants only had to scroll down to find the
next command.

6.2.3. Results. Effects of Association Technique. This
analysis included only the Sketch and VoodooIO
interfaces, as these were the only two that allowed both
Annotation and List association. Across all trials in
these conditions, tasks were completed in
approximately one minute (mean 54 seconds, s.d. 16
seconds). ANOVA showed a significant main effect of
Association Technique (F1,11 = 19.9, p < 0.01), with
Annotation (mean 47.7s, s.d. 10.4s) faster than List
(mean 61.8s, s.d. 17.5s) by more than 20%. There was
also a significant interaction between Association

Figure 4. A user creates an interface after a
template (same for physical controls).

Figure 5. Alternative binding: a control is
configured by selecting a function from an
on-screen pop-up (same for sketched control)

Technique and Trial (F1,11 = 10.4, p < 0.01). From trial
one to trial two, performance with List association
improved more dramatically (71.0s to 52.6s) than it did
with Annotation (51.2s to 44.2s). This was expected, as
subjects learned the position of the list items and could
find them more easily in the second trial; in contrast,
writing the labels was nearly as fast in the first trial as
in the second.

Effects of Interface. This analysis used the List

association data from each of the three Interface types.
There was no significant main effect of Interface
(F2,22 = 1.3, p = 0.31) (Sketch controls mean 59.1s, s.d.
16.3s; VooodooIO 64.5s, s.d. 18.5s; Keyboard 64.6s,
s.d. 19.1s). This result indicates that the main
difference within the conditions is caused by
Association Technique and not by Interface.

Subjective Ratings. Participants rated each condition

on a scale of 1 (worst) to 20 (best) at the end of each
set of trials. Participants clearly preferred the
Sketch+Annotation condition (mean rating 16.7, s.d.
2.8), over both Sketch+List (13.8, s.d. 4.6) and
Keyboard+List (11.1, s.d. 4.42).

4.3. Benefits of Labelling

In our system, handwritten annotations are used to
associate controls to application functions, but they
also serve as a label for the control. The goal of the
third study was to determine whether visible labels
help users remember the functions of adapted controls.

4.3.1 Design and Procedure. The study used a one-
way factorial design with the single factor Labelling
(Labels or None). Participants were asked to select
particular named controls from a mocked-up interface,
containing 5 controls; the controls were either labelled
with their names (using handwritten labels similar to
those used in Study 2) or not, depending on the
condition.

The 12 participants of his experiment were the same
as in Study 2. In both conditions (Labels and None),
participants were given ten seconds to familiarise
themselves with the layout of the controls and labels (if
present). Component names were different in each
condition, and were chosen randomly from the
standard Photoshop palettes. Order of the conditions
was equalized across the participant group.

Participants carried out 60 trials in each condition.
In each trial, participants were given the name of an
application function, and then had to click on the
corresponding interface control. The system gave audio
feedback on correct and incorrect actions, but did not

continue to the next trial until the participant had
selected the correct control. The two dependent
measures were completion time and number of errors.

4.3.2 Results. We tested the effects of labelling on
completion time, error rate, and subjective preference.
As expected, having labels led to significant
improvements in performance and preference.

Completion time. A one-way ANOVA showed a

significant main effect of Labelling on completion time
(F1,11 = 12.93, p < 0.01), with Labels (1.2 seconds, s.d.
0.18 seconds) faster than None (1.5s, s.d. 0.34s).

Error rate. There was also a significant main effect

of Labelling on error rate (F1,11 = 8.8, p < 0.05), with
Labels (mean error rate 0.0028s, s.d. 0.0065s)
dramatically lower than None (mean 0.12s, s.d. 0.14s).

Subjective rating. Participants’ qualitative rating of

the conditions (on 20-point scales) clearly showed that
they preferred the Labels condition (mean rating 15.0,
s.d. 3.5) over None (mean 7.7, s.d. 4.8).

4.4. Performance with Adapted Controls

The goal of the fourth study was to compare the
different interface conditions in use – that is, how do
the interfaces compare for actual tasks, once the
controls are created and associated with application
functions.

We tested the same three interfaces that were used
in the second study: a paper-based sketched interface, a
palette of annotated VoodooIO controls, and a wireless
keyboard. The keyboard was included because
keyboard shortcuts are the standard means for adapting
interfaces in conventional applications. The
participants in the study were the same people from
Studies two and three, and the experiment was
conducted in the same setting and with the same setup
as Study two (Photoshop displayed on a top-projected
table).

4.4.1. Design and Procedure. The study used a one-
way factorial design, with Interface as the single factor
(Sketched Controls, VoodooIO, and Keyboard, as
shown in Figure 10). Dependent measures were item
completion time and error rate.

The participant’s task was to carry out a set of
interface actions using an interface similar to what was
built in Study Two (again the context was a drawing
application such as Photoshop). Each task involved
selecting a particular tool, adjusting the linear control
to match a particular value shown on the display, and

clicking on a screen region with the Anoto pen. An
example of the task is shown in Figure 6. Participants
carried out 60 trials in each condition. The on-screen
targets for each trial moved to a new random location
in the workspace. Order of the conditions was balanced
using a Latin square. The task was designed to reflect
some aspects of real-world use, where users quickly
switch between tools or between colours, and also
adjust a parameter such as brush size, while interacting
with different objects in the workspace.

The Sketch and VoodooIO interfaces worked as
described above. The Keyboard interface mapped six
keys (Q, W, E, R, T, and G) to each of the different
functions (T and G adjusted the linear control up and
down). The keys on the keyboard were not labelled
with their function names; however, participants were
told which keys were active (and were told that the
mapping corresponded with what they had built in
Study 1).

4.4.2. Results. We tested the effects of Interface on
completion time, error rate, and subjective rating.

Completion time. One-way ANOVA showed a

significant main effect of Interface on completion time
(F1,22 = 4.1, p = 0.03). However, none of the post-hoc
pairwise tests showed significant differences between

conditions (using a Bonferroni correction). The trend
was that VoodooIO was slowest (mean 6.9 seconds,
s.d. 1.0 seconds), then Keyboard (6.0s, s.d. 1.7s), and
Sketched Controls fastest (5.9s, s.d. 0.88s).

One reason for the lower performance of VoodooIO
might be its high latency (200ms) and minor hardware
issues (e.g., sometimes buttons are pressed without
firing the event, and the physical sliders can be
inaccurate). On the other hand, it was interesting that
the Sketched interface performed similarly to the
Keyboard. The keyboard has an advantage in that it
can easily be used in a bi-manual fashion (dominant
hand holding the pen, non-dominant hand controlling
the keys), but also has the disadvantage of being hard
to move to the local region of the activity.

Error rate. There was also a significant main effect

of Interface on error rate (F2,22 = 16.0, p < 0.01). The
rates for both the Sketch interface (mean error rate
0.029, s.d. 0.10) and the VoodooIO (mean 0.022, s.d.
0.026) were far lower than for the Keyboard (mean
0.69, s. d. 0.56). These differences are significant
(p<0.01). These error rates imply approximately one
error in 40 selections for Sketched and VoodooIO, but
more than one error in every two selections for the
Keyboard.

Subjective rating. Participants clearly preferred the

Sketched interface (mean rating 17.7, s.d. 1.7) over
VoodooIO (mean 12.7, s.d. 4.4), and both of these over
the Keyboard interface (mean 9.4, s.d. 4.3).
Participants commented on the hardware problems
with the VoodooIO controls, but nevertheless preferred
this interface over the standard solution.

5. Discussion

The study results show that users are able to quickly
understand the pen and paper techniques we have
introduced, and to use them effectively for creation and
mapping of controls. Simple closed shapes have
proven to be easily understandable by both user and
recognition, while still being powerful and flexible.
For instance, this allows users to draw symbolic
control areas (e.g. an up-arrow for the “up” function)
or to balance the size of controls according to the need
for frequency of access (larger controls are easier to
target) or resolution (larger sliders give higher
resolution). The handwriting recognition also
performed very reliably, which can be attributed to the
fact that the recognizer can limit its vocabulary to the
set of application functions. This is a specific
advantage of handwriting recognition in the context of
interface configuration.

Figure 6. Usage scenario: (1) the user selects
a tool, (2) adjusts a tool parameter and (3)
clicks on a target on the screen. This was
done for sketched and tangible controls and a
standard keyboard. On-Screen targets
randomly pop up on different screen
locations

Labelling proves to be more efficient than list
selection for control mapping, independent of whether
the mapped control is a physical or paper-based device.
Users also prefer labelling over list selection for either
type of control, with a more pronounced preference
when the control itself is paper-based. One important
assumption that was made in our study is the fact that
users are able to remember appropriate function names.
The current algorithm for parsing the handwritten
labels relies on the user writing down the exact
function name. In case the user cannot express a
function name for any reason (e.g. because she fails to
remember the exact name) several possibilities exist.
The most obvious solution is to offer a fall-back, such
as the on-screen list used in experiment 2, from which
the user can select the function and learn its name (the
list could be invoked, for example, if the user labels a
control with ‘?’). Another method is to extend the
parsing of the function names in a more sophisticated
way. For instance, words written close to a control
could be treated like a search query, similar to a
Google search on indexed websites. Here, functions
would be indexed according to meta-information (e.g.
extracted from tooltips or additional tags that the
interface designer provides). Functions could then be
found without an exact match (e.g. “transparency”
would give a hit for “opacity”), corrected for mistakes
or slightly wrong expressions (similar to Google’s “did
you mean …?”) and behaviour could even be refined
by adding more words to the label (e.g. if “opacity”
alone does not change the opacity of the layer with the
name “background”, adding “background” next to
opacity would specialize the function to control the
opacity for the “background” layer).

Apart from the reported measurements, two more
conceptual advantages of labelling can be mentioned.
First, assuming that users have learned the function
names, labelling is likely to be faster in situations with
large numbers of functions, since retrieving a name
from memory is faster than finding it in a list. Second,
labelling does not rely on the user being at a specific
location around the table; in contrast, the on-screen list
pops up at a fixed position, requiring a fixed user
location and orientation in order to interact with the
list. This could be improved by adding location
awareness to the system – but the technical challenge
to achieve this is not trivial, particularly when looking
at multi-user scenarios. In contrast, labelling on
localized palettes works inherently for multiple users
and allows mobile creation and configuration from
arbitrary positions and perspectives around the table.

Labelling was further shown to have the benefit of
improving the usability of adapted controls: increasing
efficiency of their use as well as reducing the number
of errors. Users also preferred labelled controls over

unlabelled ones: this would be expected for neatly
printed labels but, importantly, shows user acceptance
of handwritten labels in the interface.

The final study investigated usability of adapted
controls in realistic tasks, and the results show that
users are able to use them as effectively as traditional
input devices. In particular, users perform as well with
sketched controls as with physical controls, in terms of
both efficiency and error rate. Notably, we observed a
subjective preference for sketched controls. Originally,
we designed the system to support physical controls
because of their conceptual benefits (e.g., tactile
feedback and two-handed interaction). Our studies
show that pen and paper alone could allow for
sufficient interface customization and would also
deliver good performance with few errors. This is a
particularly interesting result since paper-only palettes
are cheap and easy to add to existing tabletop systems
(this eliminates the need for the additional foam
material used for the physical controls). Paper-only
palettes can also be operated completely wirelessly and
can be easily shared by participants (palettes can even
be cut or torn to distribute parts of the palette to
different users). In comparison to interacting with
graphical controls, paper controls additionally have the
advantage of providing very high input resolution, and
can be easily moved around the work-surface (or off
entirely) to eliminate occlusion with other on-screen
elements. The created paper interfaces can also be
naturally handled like conventional paper – for
instance, they could be filed into folders for later use.

The main benefit of labelling and sketching of
controls is the natural, spontaneous, and fast manner in
which they allow users to add off-screen control to
applications. Since the footprint of pen-and-paper
labels and sketches is larger than that of on-screen
controls, these methods are most suited for
customisation with a moderate number of controls. The
speed at which controls can be created, mapped,
spatially arranged, and removed makes the approach
particularly useful for throwaway adaptations: the
dynamic assembly of controls to be close to hand for a
limited duration, in support of changing tasks and
interaction focus. Throwaway adaptation is particularly
meaningful in conjunction with pure paper palettes,
since interface palettes can literally be recycled.

6. Conclusion

This paper’s contribution is the evaluation of two
digital pen and paper methods that support on-the-fly
customisation of interfaces. Our experiences in
applying these methods in an augmented tabletop and
the results of our empirical studies show that

VoodooSketch provides both practical usability and
concrete performance advantages, including efficient
control mapping and effective use of dynamically-
mapped controls. A more general conclusion that we
can draw from this research is that digital pen and
paper lend themselves well to lightweight and dynamic
customisation of interfaces. This is important since
digital pen and paper are low cost, mobile, and
intuitively usable.

There are two broader considerations we take away
from this work. The first concerns the use of
handwritten labels as a simple but effective way of
configuring a control. We have introduced this concept
for mapping against a predefined set of functions
within a given application setting; but in a more
general approach, labels could also be used for finding
and binding functions more generally, such as in
pervasive networks. A second general principle that
this research has brought out is the fluidity of interface
customisation that can achieved (with plug-and-play
controls as well as pen and paper): this can give rise to
new interface styles for tabletop systems in which
customisation and use are naturally intertwined.

10. References

[1] Anoto. http://www.anoto.com/.

[2] F. Block, M. Haller, H. Gellersen, C. Gutwin, and M.
Billinghurst. VoodooSketch – Extending Interactive Surfaces
with Adaptable Interface Palettes. Proc. Conf. on Tangible
Embedded Interaction (TEI 2008), pp 55-58.

[3] M. Fjeld, F. Voorhorst, M. Bichsel, K. Lauche, M.
Rauterberg, H. Krueger: Exploring Brick-Based Navigation
and Composition in an Augmented Reality. Proc. HUC 1999:
102-116

[4] S. Greenberg and M. Boyle. Customizable physical
interfaces for interacting with conventional applications. In
Proc. UIST ’02, pp. 31–40.

[5] F. Guimbretière. Paper augmented digital documents. In
Proc. UIST ’03, pp. 51–60.

[6] M. Haller, P. Brandl, D. Leithinger, J. Leitner, S. T., and
M. Billinghurst. Shared design space: Sketching ideas using
digital pens and a large augmented tabletop setup. In Proc.
ICAT 2006, pp. 948–959. LNCS 4282, Springer Verlag.

[7] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla,
B. Burr, A. Robinson-Mosher, and J. Gee. Reflective
physical prototyping through integrated design, test, and
analysis. In Proc. UIST ’06, pp. 299–308.

[8] H. Ishii and B. Ullmer. Tangible bits: towards seamless
interfaces between people, bits and atoms. In Proc. CHI '97,
pp. 234-241.

[9] J. A. Landay and B. A. Myers. Interactive sketching for
the early stages of user interface design. In Proc. CHI ’95,
pp. 43–50.

[10] C. Liao, F. Guimbretière, and K. Hinckley. Papiercraft:
a command system for interactive paper. In Proc. UIST ’05,
pp. 241–244.

[11] T. J. Nam. Sketch-based rapid prototyping platform for
hardware-software integrated interactive products. In CHI
’05 extended abstracts, pp. 1689–1692.

[12] J. Patten, H. Ishii, J. Hines and G. Pangaro. Sensetable:
a wireless object tracking platform for tangible user
interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Seattle, Washington,
United States). CHI '01. ACM, New York, NY, 253-260.

[13] B. Plimmer and M. Apperley. Computer-aided sketching
to capture preliminary design. In AUIC ’02: Proc. of the
Third Australasian conf. on User interfaces, pp. 9–12,
Darlinghurst, Australia, 2002.

[14] C. Shen, F. D. Vernier, C. Forlines and M. Ringel.
DiamondSpin: An Extensible Toolkit for Around-the-Table
Interaction. In Proc of CHI ’04, pp. 167-174.

[15] W. Spiessl, N. Villar, H. Gellersen, and A. Schmidt.
Voodooflash: authoring across physical and digital form. In
TEI ’07: Proc. First Int. Conf. on Tangible and Embedded
Interaction, pp. 97–100, 2007, ACM Press.

[16] B. Ullmer and H. Ishii. The metaDESK: models and
prototypes for tangible user interfaces. In Proc. UIST '97, pp.
223-232.

[17] N. Villar and H. Gellersen. A malleable control structure
for softwired user interfaces. In TEI ’07: Proc. First Int.
Conf. on Tangible and Embedded Interaction, ACM Press.

[18] P. Wellner. Interacting with paper on the digitaldesk.
Commun. ACM, 36(7):87–96, 1993.

[19] D. West, A. Quigley, and J. Kay. MEMENTO: a digital-
physical scrapbook for memory sharing. Personal and
Ubiquitous Computing, 11(4):313–328, 2007.

