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Abstract 

 
An advantage of physical interfaces over graphical 
widgets is that they bring controls closer to hand. 
VoodooSketch is a system that supports dynamic 
customisation of tabletop interfaces with physical 
controls that users can arrange on palettes. The system 
employs pen and paper techniques to achieve two 
novel capabilities: first, users are able to sketch 
controls that are immediately operational for pen 
interaction; second, users can label the controls with a 
handwritten name that identifies their function and 
binds the control to an application. This paper 
presents the results of an empirical evaluation of the 
VoodooSketch interface customisation techniques. The 
main findings of the study are: that users are able to 
easily create sketched controls; that they can use them 
as effectively as traditional input devices; that 
handwritten labelling is more efficient for control 
mapping than conventional screen-based methods; and 
that the sketched controls improve user performance 
and reduce error rates. 

1. Introduction 

Physical controls have an advantage over graphical 
interface widgets in that they do not compete for screen 
space, cannot become hidden under other windows, 
and are more directly accessible to the user.  Previous 
work has demonstrated the feasibility of customising 
graphical interfaces with physical controls that users 
can bind at run time to conventional applications [4]. 
Lightweight physical customisation allows users to 
create shortcuts to frequently-used controls, brings 
tools and functions closer to hand for a given task, and 
facilitates more efficient and precise input [17].  

Customisation with physical controls can be 
particularly useful for tabletop interaction. Tabletop 
interfaces involve larger graphical surfaces on which 
control widgets conventionally arranged in toolbars 
can be difficult to reach, specifically in the context of 
multi-user interaction. A common strategy is to 

replicate graphical toolbars that users can position and 
re-orient for round-the-table interaction [14]. 
VoodooSketch presents an alternative strategy through 
the idea of physical customisation. As previously 
reported, the system allows users to dynamically create 
and arrange controls on physical palettes that can be 
conveniently positioned and moved over the larger 
graphical surface [2]. Users can adapt physical palettes 
of arbitrary shape and size, ‘plug in’ physical control 
devices, draw controls for pen-based interaction, and 
label adapted controls with a name that identifies their 
function and creates a corresponding application 
binding (illustrated in Figure 1). The result is an 
interface that it is very flexible – both in terms of ad 
hoc tailoring of functions for direct physical access, 
and also in terms of mobility and dynamic arrangement 
of physical palettes over the tabletop. 

This paper investigates in more depth the digital pen 
and paper customization techniques that are part of 
VoodooSketch. We report on a set of studies that 
analyse three issues: how intuitive and easy to learn 
sketching and handwritten labelling of controls are for 
interface adaptation; how efficient labelling is for 

 

Figure 1. A tabletop interface augmented with 
physical palettes on which controls can be 
created and bound on the fly. The close-up 
shows an ad hoc assembly of controls for a 
Photoshop task 



control mapping in comparison with on-screen 
methods; and how well users perform with sketched 
controls. The studies provide empirical evidence that 
the techniques are usable and effective. They show in 
particular that pen and paper controls, even in a rough 
sketched form, can be used as effectively as traditional 
control devices, and that handwritten labels are not 
only a fast method for mapping but also help reduce 
the error rate with adapted controls. 

2. Related Work 

The use of physical devices for interaction on 
tabletops has been demonstrated in a wide range of 
work, from tangible user interfaces to augmented 
reality surfaces [8, 3]. This research highlights the 
advantages of physical controls for tangible interaction 
with graphical simulations [16], for multi-user 
interaction around the table [3], and for precise user 
input on interactive surfaces [12]. The mapping of 
physical controls, however, is usually application-
specific. The principal idea of VoodooSketch, in 
contrast, is to support end-user adaptation of generic 
physical controls, as a shortcut to tools and functions in 
tabletop applications. 

Greenberg and Boyle were the first to discuss end-
user customisation of conventional GUI applications 
with physical interfaces [4]. They introduced a ‘widget 
picker’ method for direct selection of a widget in the 
GUI, triggering a dialogue through which functions 
associated with the widget could be selected from a list 
and mapped to a physical device. VoodooSketch 
likewise supports spontaneous binding of physical 
controls that are immediately usable (without ‘re-
booting’ the application), but provides handwritten 
labelling as a different end-user technique for control 
mapping. This is a conceptual difference, as it focuses 
adaptation on definition of the function of a newly 
added control, rather than on selection of a proxy for a 
graphical control. This is also a practical difference, as 
the customisation occurs off-screen by direct 
annotation of a control rather than on-screen by 
selection from a menu. In this paper, we specifically 
examine whether direct annotation with a handwritten 
label is more efficient than on-screen control mapping. 

Customisable physical interfaces have also been 
investigated in systems that focus on rapid prototyping 
across the physical and digital aspects of digital 
products, including d.tools [7] and VoodooIO [15,17]. 
These systems provide tools for dynamic assembly of 
the physical controls of an interactive product, and for 
their mapping to simulations of target functionality. 
However, control mapping in this context is for design 
rather than customisation, and is supported by code 

editors rather than by techniques for end-user 
adaptation at run time. 

Sketching of interfaces has also been widely 
investigated, although the work has focused on 
enabling designers to produce rough sketches of an 
interface that at a later stage can be translated into an 
operational interface [9]. Sketching is generally 
considered to be the preferred preliminary capture 
process for designers because it provides a quick and 
easy way to externalise design ideas [13]. This has 
inspired much follow-on research into interactive 
sketching as a design tool, including the combination 
of sketching with physical prototyping for interactive 
product design [11]. In contrast to interface sketching 
for design, VoodooSketch introduced sketching as an 
end-user technique for on-the-fly creation of controls 
that are immediately usable for interaction. In this 
paper we investigate the ease of use of the technique as 
well as the usability of sketched controls for 
interaction.  

Digital pen and paper techniques have also been 
studied more widely, from early visionary work on 
fluid transition between paper and digital media [18] to 
infrastructures for documents that can be manipulated 
in digital as well as in paper form [5]. Commercially 
available technologies such as Anoto now support 
capture and wireless transmission of handwriting in 
real time [1], and the synchronous interaction between 
pen, paper and computer can be used to create paper 
interfaces that control an application. This has spurred 
development of pen and paper interfaces, for instance 
for a digital scrapbook [19], and for annotation of 
digital documents using printouts as proxies [10]. Our 
work differs from this research in that we do not focus 
on leveraging printed material, but on facilitating 
customisable off-screen control of applications.  

3. The VoodooSketch System 

The VoodooSketch system was originally 
introduced in earlier work [2]. As context for the 
empirical studies we report below, we summarise the 
main concepts and components of the system.  

 
Interface palettes and pen interaction. 

VoodooSketch augments an interactive tabletop with 
one or more interface palettes which are physically 
separate from the underlying tabletop surface. Initially, 
palettes are empty. A special pen can be used to draw 
on the palette surface with real ink and to digitally 
interact with the graphical tabletop surface (see Fig. 2, 
augmented tabletop is based on [6]).  

 



Interface Composition, Configuration and Usage. A 
user can instantiate physical controls and/or sketched 
controls on the palettes. As shown in Figure 3 (1a), 
physical controls are added by inserting plug-in 
devices from a toolkit (e.g., a slider) that become 
networked via conductive sheets embedded in the 
palette, while sketched controls are created by drawing 
an arbitrary closed shape (e.g., a rectangle, see Fig. 3, 
1b). To give meaning to a new control, the user labels 
it by writing the name of a function. This process is 
identical for sketched and physical controls (see Fig. 3, 
2a & 2b). The system detects the handwriting and finds 
the appropriate function in the function pool of the 
application that is active on the tabletop. Once a 
control is labelled, its input is linked to that function.  

Physical controls are directly manipulated by hand 
(see Fig. 3, 3a) and produce a defined value (e.g., 
scalar output for sliders), which is forwarded to the 
associated application function (e.g., opacity of an 
object). The sketched controls are operated with the 
pen, and show different behaviours depending on 
which function they are associated with. If the function 
is binary (e.g. “Save”), tapping the control with the pen 
invokes the action; if the function requires scalar input, 
the longer side of the shape is taken as an axis and the 
pen can be moved along this axis in a slider-like 
fashion. Pen interaction leaves permanent traces in the 
shape but this does not disturb the operation of the 
underlying tracking technology (see Fig. 3, 3b). 

4. Empirical Evaluations 

We have conducted four studies to evaluate the pen 
and paper techniques for interface customisation. The 
first study tested the accuracy of the sketch-and-
handwriting recognition engine; the second tested the 
time needed to associate controls with application 
functions, in comparison with list selection; the third 
tested the benefit of having labels beside the adapted 
controls; and the fourth assessed the performance of 

sketched controls in actual tasks, in comparison with 
physical controls and keyboard.  

In all four studies, participants were recruited from 
a local university, and all had extensive experience 
with mouse-and-windows software. The studies used 
either Photoshop CS2 or custom-built C# applications, 
and were run on a Toshiba Qosmio notebook with a 
dual-core 1.83 GHz Centrino processor, 2GB RAM, 
and an nVidia 7600 display card. Two of the studies 
(second and fourth) used a 1024×768 top-projected 
table display. The table was 120cm×85cm, and was 
covered with Anoto paper. All interaction was carried 
out through an Anoto pen as a digital input device. The 
other studies used the standard laptop screen, at 
1440×900 resolution.  

4.1. Recognition Accuracy 

The goal of the first study was to determine how 
accurate the recognition engine was for component 
sketches and associated handwritten labels. Twelve 
participants who were new to the recognition system 
(five male, seven female) were each asked to draw 
three sets of 10 component/label pairs, and the error 
rate was recorded. The users could draw arbitrary 
closed shapes but the label was different for each set 
and was prompted to the user via a monitor. An error 
occurred when the system did not detect a closed shape 
or when the system did not detect the prompted label 
(so one trial could produce 2 total errors). In the first 
set of trials, the mean error rate in recognition was 0.17 
(approximately one trial in six); this improved by the 
third set to 0.09 (less than one in ten). From our own 
use of the system, it is clear that this trend continues -
our own experience is that the recognizer very rarely 
makes errors for experienced users. Based on these 

 

Figure 2. A hybrid pen writes with real ink on 
the palette surface and acts as digital input 
on the augmented tabletop (which is covered 
with an ink-repellent layer) 

 

Figure 3. Composition, configuration and 
usage of controls on an interface palette 



results, and because we did not have time to train the 
system for each of the participants in the next studies, 
the experimenter in these studies controlled the 
recognition engine and ensured that the user’s input 
was correctly interpreted. This methodology allowed 
us to compare techniques without requiring extensive 
training; it is important to note, however, that 
participants worked normally with the system and were 
not aware of this experimenter control.  

4.2. Creating and Mapping Controls 

The goal of the second study was to compare the 
time required for different methods for creating new 
controls and mapping them to application functions. 
We tested three types of controls (paper sketches, 
VoodooIO physical controls, and keys on a standard 
keyboard), and two association mechanisms 
(handwritten annotation with labels and on-screen 
selection from a list). List selection was chosen as a 
reference mechanism, as it is common for control 
mapping in commercial software (e.g., Photoshop) and 
existing customisable physical interfaces [6, 25].  

The study involved twelve participants (5 male, 7 
female), and was carried out using Photoshop CS2 on 
the top-projected table (see description above).  

 
4.2.1. Design. The study used a 3x2x2 factorial design 
with three factors:  
 
• Interface (Sketch, VoodooIO, or Keyboard)  
• Association Technique (Annotation or List)  
• Trial (first or second trial with same component)  

 
Since the combination of Annotations and 

Keyboard could not be tested, we set up the study as 
two separate designs: one that focused on the effects of 
Association technique, and one that tested the effects 
of Interface. The dependent measure in all cases was 
task completion time.  
 
4.2.2. Procedure. Participants were introduced to the 
interface and the concept of adaptable interfaces, and 

then carried out a five-minute training session, in 
which they practiced associating basic commands in 
Photoshop. They then carried out test trials in each of 
the five conditions; their task was to construct a small 
interface from a template (Fig. 4). In two conditions, 
sketched and physical controls were configured with 
the demonstrated labelling mechanism (Fig. 3) and in 
another two by selecting from an on-screen list (Fig 5). 
The list pops up automatically once a new control is 
detected. The fifth condition was to associate keyboard 
shortcuts with Photoshop’s standard key-binding 
dialogue. Before each different interface, participants 
were given a demonstration of that condition. 
Participants carried out each task twice in succession. 
The order of conditions was balanced using a Latin 
square design.  

The target interfaces each contained four buttons 
and one linear control (slider or dial). Since there is no 
linear control on the keyboard, this was replaced with 
two buttons for increasing and decreasing the value of 
the appropriate function. The functions that 
participants had to associate were the same for the two 
trials within each condition, but were changed between 
conditions. In all of the List association conditions, 
participants used the standard Photoshop list of 
commands for the standard palettes (e.g., brush, pencil, 
eraser); this list contains 65 items. Items were chosen 
to require an equal amount of scrolling and were 
organized to match the order of the on-screen list, so 
that participants only had to scroll down to find the 
next command. 
 
6.2.3. Results.  Effects of Association Technique. This 
analysis included only the Sketch and VoodooIO 
interfaces, as these were the only two that allowed both 
Annotation and List association. Across all trials in 
these conditions, tasks were completed in 
approximately one minute (mean 54 seconds, s.d. 16 
seconds). ANOVA showed a significant main effect of 
Association Technique (F1,11 = 19.9, p < 0.01), with 
Annotation (mean 47.7s, s.d. 10.4s) faster than List 
(mean 61.8s, s.d. 17.5s) by more than 20%. There was 
also a significant interaction between Association 

 

Figure 4. A user creates an interface after a 
template (same for physical controls). 

 

Figure 5. Alternative binding: a control is 
configured by selecting a function from an 
on-screen pop-up (same for sketched control) 



Technique and Trial (F1,11 = 10.4, p < 0.01). From trial 
one to trial two, performance with List association 
improved more dramatically (71.0s to 52.6s) than it did 
with Annotation (51.2s to 44.2s). This was expected, as 
subjects learned the position of the list items and could 
find them more easily in the second trial; in contrast, 
writing the labels was nearly as fast in the first trial as 
in the second.  

 
Effects of Interface. This analysis used the List 

association data from each of the three Interface types. 
There was no significant main effect of Interface 
(F2,22 = 1.3, p = 0.31) (Sketch controls mean 59.1s, s.d. 
16.3s; VooodooIO 64.5s, s.d. 18.5s; Keyboard 64.6s, 
s.d. 19.1s). This result indicates that the main 
difference within the conditions is caused by 
Association Technique and not by Interface.  

 
Subjective Ratings. Participants rated each condition 

on a scale of 1 (worst) to 20 (best) at the end of each 
set of trials. Participants clearly preferred the 
Sketch+Annotation condition (mean rating 16.7, s.d. 
2.8), over both Sketch+List (13.8, s.d. 4.6) and 
Keyboard+List (11.1, s.d. 4.42).  

4.3. Benefits of Labelling 

In our system, handwritten annotations are used to 
associate controls to application functions, but they 
also serve as a label for the control. The goal of the 
third study was to determine whether visible labels 
help users remember the functions of adapted controls.  

 
4.3.1 Design and Procedure. The study used a one-
way factorial design with the single factor Labelling 
(Labels or None). Participants were asked to select 
particular named controls from a mocked-up interface, 
containing 5 controls; the controls were either labelled 
with their names (using handwritten labels similar to 
those used in Study 2) or not, depending on the 
condition.  

The 12 participants of his experiment were the same 
as in Study 2. In both conditions (Labels and None), 
participants were given ten seconds to familiarise 
themselves with the layout of the controls and labels (if 
present). Component names were different in each 
condition, and were chosen randomly from the 
standard Photoshop palettes. Order of the conditions 
was equalized across the participant group.  

Participants carried out 60 trials in each condition. 
In each trial, participants were given the name of an 
application function, and then had to click on the 
corresponding interface control. The system gave audio 
feedback on correct and incorrect actions, but did not 

continue to the next trial until the participant had 
selected the correct control. The two dependent 
measures were completion time and number of errors.  
 
4.3.2 Results. We tested the effects of labelling on 
completion time, error rate, and subjective preference. 
As expected, having labels led to significant 
improvements in performance and preference.  

 
Completion time. A one-way ANOVA showed a 

significant main effect of Labelling on completion time 
(F1,11 = 12.93, p < 0.01), with Labels (1.2 seconds, s.d. 
0.18 seconds) faster than None (1.5s, s.d. 0.34s).  

 
Error rate. There was also a significant main effect 

of Labelling on error rate (F1,11 = 8.8, p < 0.05), with 
Labels (mean error rate 0.0028s, s.d. 0.0065s) 
dramatically lower than None (mean 0.12s, s.d. 0.14s).  

 
Subjective rating. Participants’ qualitative rating of 

the conditions (on 20-point scales) clearly showed that 
they preferred the Labels condition (mean rating 15.0, 
s.d. 3.5) over None (mean 7.7, s.d. 4.8).  

4.4. Performance with Adapted Controls 

The goal of the fourth study was to compare the 
different interface conditions in use – that is, how do 
the interfaces compare for actual tasks, once the 
controls are created and associated with application 
functions.  

We tested the same three interfaces that were used 
in the second study: a paper-based sketched interface, a 
palette of annotated VoodooIO controls, and a wireless 
keyboard. The keyboard was included because 
keyboard shortcuts are the standard means for adapting 
interfaces in conventional applications. The 
participants in the study were the same people from 
Studies two and three, and the experiment was 
conducted in the same setting and with the same setup 
as Study two (Photoshop displayed on a top-projected 
table).  
 
4.4.1. Design and Procedure. The study used a one-
way factorial design, with Interface as the single factor 
(Sketched Controls, VoodooIO, and Keyboard, as 
shown in Figure 10). Dependent measures were item 
completion time and error rate.  

The participant’s task was to carry out a set of 
interface actions using an interface similar to what was 
built in Study Two (again the context was a drawing 
application such as Photoshop). Each task involved 
selecting a particular tool, adjusting the linear control 
to match a particular value shown on the display, and 



clicking on a screen region with the Anoto pen. An 
example of the task is shown in Figure 6. Participants 
carried out 60 trials in each condition. The on-screen 
targets for each trial moved to a new random location 
in the workspace. Order of the conditions was balanced 
using a Latin square. The task was designed to reflect 
some aspects of real-world use, where users quickly 
switch between tools or between colours, and also 
adjust a parameter such as brush size, while interacting 
with different objects in the workspace.  

The Sketch and VoodooIO interfaces worked as 
described above. The Keyboard interface mapped six 
keys (Q, W, E, R, T, and G) to each of the different 
functions (T and G adjusted the linear control up and 
down). The keys on the keyboard were not labelled 
with their function names; however, participants were 
told which keys were active (and were told that the 
mapping corresponded with what they had built in 
Study 1).  
 
4.4.2. Results. We tested the effects of Interface on 
completion time, error rate, and subjective rating.  

 
Completion time. One-way ANOVA showed a 

significant main effect of Interface on completion time 
(F1,22 = 4.1, p = 0.03). However, none of the post-hoc 
pairwise tests showed significant differences between 

conditions (using a Bonferroni correction). The trend 
was that VoodooIO was slowest (mean 6.9 seconds, 
s.d. 1.0 seconds), then Keyboard (6.0s, s.d. 1.7s), and 
Sketched Controls fastest (5.9s, s.d. 0.88s).  

One reason for the lower performance of VoodooIO 
might be its high latency (200ms) and minor hardware 
issues (e.g., sometimes buttons are pressed without 
firing the event, and the physical sliders can be 
inaccurate). On the other hand, it was interesting that 
the Sketched interface performed similarly to the 
Keyboard. The keyboard has an advantage in that it 
can easily be used in a bi-manual fashion (dominant 
hand holding the pen, non-dominant hand controlling 
the keys), but also has the disadvantage of being hard 
to move to the local region of the activity.  

 
Error rate. There was also a significant main effect 

of Interface on error rate (F2,22 = 16.0, p < 0.01). The 
rates for both the Sketch interface (mean error rate 
0.029, s.d. 0.10) and the VoodooIO (mean 0.022, s.d. 
0.026) were far lower than for the Keyboard (mean 
0.69, s. d. 0.56). These differences are significant 
(p<0.01). These error rates imply approximately one 
error in 40 selections for Sketched and VoodooIO, but 
more than one error in every two selections for the 
Keyboard.  

 
Subjective rating. Participants clearly preferred the 

Sketched interface (mean rating 17.7, s.d. 1.7) over 
VoodooIO (mean 12.7, s.d. 4.4), and both of these over 
the Keyboard interface (mean 9.4, s.d. 4.3). 
Participants commented on the hardware problems 
with the VoodooIO controls, but nevertheless preferred 
this interface over the standard solution. 

5. Discussion 

The study results show that users are able to quickly 
understand the pen and paper techniques we have 
introduced, and to use them effectively for creation and 
mapping of controls. Simple closed shapes have 
proven to be easily understandable by both user and 
recognition, while still being powerful and flexible. 
For instance, this allows users to draw symbolic 
control areas (e.g. an up-arrow for the “up” function) 
or to balance the size of controls according to the need 
for frequency of access (larger controls are easier to 
target) or resolution (larger sliders give higher 
resolution). The handwriting recognition also 
performed very reliably, which can be attributed to the 
fact that the recognizer can limit its vocabulary to the 
set of application functions. This is a specific 
advantage of handwriting recognition in the context of 
interface configuration. 

 

Figure 6. Usage scenario: (1) the user selects 
a tool, (2) adjusts a tool parameter and (3) 
clicks on a target on the screen. This was 
done for sketched and tangible controls and a 
standard keyboard. On-Screen targets 
randomly pop up on different screen 
locations 



Labelling proves to be more efficient than list 
selection for control mapping, independent of whether 
the mapped control is a physical or paper-based device. 
Users also prefer labelling over list selection for either 
type of control, with a more pronounced preference 
when the control itself is paper-based. One important 
assumption that was made in our study is the fact that 
users are able to remember appropriate function names. 
The current algorithm for parsing the handwritten 
labels relies on the user writing down the exact 
function name. In case the user cannot express a 
function name for any reason (e.g. because she fails to 
remember the exact name) several possibilities exist. 
The most obvious solution is to offer a fall-back, such 
as the on-screen list used in experiment 2, from which 
the user can select the function and learn its name (the 
list could be invoked, for example, if the user labels a 
control with ‘?’). Another method is to extend the 
parsing of the function names in a more sophisticated 
way. For instance, words written close to a control 
could be treated like a search query, similar to a 
Google search on indexed websites. Here, functions 
would be indexed according to meta-information (e.g. 
extracted from tooltips or additional tags that the 
interface designer provides). Functions could then be 
found without an exact match (e.g. “transparency” 
would give a hit for “opacity”), corrected for mistakes 
or slightly wrong expressions (similar to Google’s “did 
you mean …?”) and behaviour could even be refined 
by adding more words to the label (e.g. if “opacity” 
alone does not change the opacity of the layer with the 
name “background”, adding “background” next to 
opacity would specialize the function to control the 
opacity for the “background” layer). 

Apart from the reported measurements, two more 
conceptual advantages of labelling can be mentioned. 
First, assuming that users have learned the function 
names, labelling is likely to be faster in situations with 
large numbers of functions, since retrieving a name 
from memory is faster than finding it in a list. Second, 
labelling does not rely on the user being at a specific 
location around the table; in contrast, the on-screen list 
pops up at a fixed position, requiring a fixed user 
location and orientation in order to interact with the 
list. This could be improved by adding location 
awareness to the system – but the technical challenge 
to achieve this is not trivial, particularly when looking 
at multi-user scenarios. In contrast, labelling on 
localized palettes works inherently for multiple users 
and allows mobile creation and configuration from 
arbitrary positions and perspectives around the table. 

Labelling was further shown to have the benefit of 
improving the usability of adapted controls: increasing 
efficiency of their use as well as reducing the number 
of errors. Users also preferred labelled controls over 

unlabelled ones: this would be expected for neatly 
printed labels but, importantly, shows user acceptance 
of handwritten labels in the interface.  

The final study investigated usability of adapted 
controls in realistic tasks, and the results show that 
users are able to use them as effectively as traditional 
input devices. In particular, users perform as well with 
sketched controls as with physical controls, in terms of 
both efficiency and error rate. Notably, we observed a 
subjective preference for sketched controls. Originally, 
we designed the system to support physical controls 
because of their conceptual benefits (e.g., tactile 
feedback and two-handed interaction). Our studies 
show that pen and paper alone could allow for 
sufficient interface customization and would also 
deliver good performance with few errors. This is a 
particularly interesting result since paper-only palettes 
are cheap and easy to add to existing tabletop systems 
(this eliminates the need for the additional foam 
material used for the physical controls). Paper-only 
palettes can also be operated completely wirelessly and 
can be easily shared by participants (palettes can even 
be cut or torn to distribute parts of the palette to 
different users). In comparison to interacting with 
graphical controls, paper controls additionally have the 
advantage of providing very high input resolution, and 
can be easily moved around the work-surface (or off 
entirely) to eliminate occlusion with other on-screen 
elements. The created paper interfaces can also be 
naturally handled like conventional paper – for 
instance, they could be filed into folders for later use. 

The main benefit of labelling and sketching of 
controls is the natural, spontaneous, and fast manner in 
which they allow users to add off-screen control to 
applications. Since the footprint of pen-and-paper 
labels and sketches is larger than that of on-screen 
controls, these methods are most suited for 
customisation with a moderate number of controls. The 
speed at which controls can be created, mapped, 
spatially arranged, and removed makes the approach 
particularly useful for throwaway adaptations: the 
dynamic assembly of controls to be close to hand for a 
limited duration, in support of changing tasks and 
interaction focus. Throwaway adaptation is particularly 
meaningful in conjunction with pure paper palettes, 
since interface palettes can literally be recycled. 

6. Conclusion 

This paper’s contribution is the evaluation of two 
digital pen and paper methods that support on-the-fly 
customisation of interfaces. Our experiences in 
applying these methods in an augmented tabletop and 
the results of our empirical studies show that 



VoodooSketch provides both practical usability and 
concrete performance advantages, including efficient 
control mapping and effective use of dynamically-
mapped controls. A more general conclusion that we 
can draw from this research is that digital pen and 
paper lend themselves well to lightweight and dynamic 
customisation of interfaces. This is important since 
digital pen and paper are low cost, mobile, and 
intuitively usable.  

There are two broader considerations we take away 
from this work. The first concerns the use of 
handwritten labels as a simple but effective way of 
configuring a control. We have introduced this concept 
for mapping against a predefined set of functions 
within a given application setting; but in a more 
general approach, labels could also be used for finding 
and binding functions more generally, such as in 
pervasive networks. A second general principle that 
this research has brought out is the fluidity of interface 
customisation that can achieved (with plug-and-play 
controls as well as pen and paper): this can give rise to 
new interface styles for tabletop systems in which 
customisation and use are naturally intertwined.  
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