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ABSTRACT 
We propose, implement and evaluate the use of a smartphone ap-
plication for real-time six-degrees-of-freedom user input. We show 
that our app-based approach achieves high accuracy and goes head-
to-head with expensive externally tracked controllers. The strength 
of our application is that it is simple to implement and is highly ac-
cessible — requiring only an of-the-shelf smartphone, without any 
external trackers, markers, or wearables. Due to its inside-out track-
ing and its automatic remapping algorithm, users can comfortably 
perform subtle 3D inputs everywhere (world-scale), without any 
spatial or postural limitations. For example, they can interact while 
standing, sitting or while having their hands down by their sides. 
Finally, we also show its use in a wide range of applications for 2D 
and 3D object manipulation, thereby demonstrating its suitability 
for diverse real-world scenarios. 
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1 INTRODUCTION 
Externally-tracked six-degrees-of-freedom (6DoF) handheld input 
controllers set the standard for 3D interaction. Users typically fnd 
them very intuitive to use, since their translation/rotation based 
movement detection allows them to be used as "virtual hands" to 
locate, grab, and manipulate 3D objects — as is done in the real-
world. Unfortunately, when external tracking is not possible (i.e. 
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due to the lack of infrastructure, on-the-go usage, etc.), the in-
teraction possibilities are drastically reduced and become highly 
device-dependent. In such cases, mobile handheld controllers (pop-
ular with recent mobile VR/AR headsets), or wearable devices with 
hand-motion tracking capabilities may be used. However, these 
require specialized hardware and/or confguration which prohibits 
spontaneous usage. Additionally, many are also incapable of 6DoF 
tracking. Previous research works have experimented with using 
the most convenient and available end-user device, a personal smart-
phone, as a means to perform 2D and 3D interactions. However, 
they have so far either required external hardware (e.g. cameras, 
trackers, printed markers) to make their phones spatially-aware, or 
have proposed interaction techniques based only on 3DoF rather 
than 6DoF input. As such, we wished to explore the possibility of a 
smartphone application that can overcome these challenges. 

Figure 1: Pocket6 is an AR application for 6DoF user in-
puts from a subtle control space which automatically re-
calibrates based on user’s orientation, position, and posture 
changes. 

In this work, we present Pocket6, a smartphone application that 
uses the AR tracking capabilities of modern smartphones to en-
able 6DoF input without requiring external hardware. We show 
that users can use Pocket6 by performing accurate subtle gestures 
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Figure 1. We extensively evaluate the performance of our approach 
and compare it against a high-end VR controller. Furthermore, we 
evaluate the impact body postures (i.e. standing, sitting, and hand-
down) have on user-performance with the application. We conclude 
by demonstrating applications and exposing scenarios in which 
our system will be benefcial. 

2 RELATED WORK 
Novel input devices (e.g. VR controller wands, etc.) have become 
increasingly more popular and common in the consumer market. 
Besides commercial 6DoF devices, smartphones and other objects 
have been used in conjunction with refective markers and external 
reference cameras to serve as controllers (e.g. OptiTrack [41]). With 
such systems, users could spatially translate the smartphone to 
navigate pan-and-zoom interfaces on smartphones [6, 43, 55], and 
other screens [7, 40]. Other works have focused on their use for 3D 
object manipulation [6, 8], proximity-aware interfaces [31, 36] as 
well as for media transfer between devices [54]. 

In most cases, researchers have indicated that using external 
tracking has considerable disadvantages [11, 28, 33]. Although sen-
sor capabilities will improve over time, problems with occlusion 
will persist and will continue to require users to perform large, 
explicit hand/arm gestures in front of their bodies [33]. These are 
more tiring, socially-conspicuous, and difcult to perform within a 
small physical space [25, 27]. Generally, exclusive controllers have 
been found to come with a lot of shortcomings, regarding range lim-
itations, acquisition times, controller size, connector cables, energy 
requirements, and manufacturing costs [28]. 

2.1 Interacting with the smartphone 
Smartphones can be a powerful alternative to exclusive controllers. 
With the Inertial Measurement Unit (IMU), phone-orientation (3DoF) 
has been used to point at distant screens [11, 15, 44, 50] and in 
VR [16, 32] via ray-casting. The IMU has furthermore been used 
for the selection and manipulation of objects in 3D environments 
via 2D rotational planes [19, 29, 45, 53, 57], for enabling throw- or 
swing gestures to transfer media between devices [14, 42], and for 
uni-stroke letter [1] or symbol [30, 63] recognition in combination 
with acceleration data. 

Many studies have shown that using the phone’s movements, 
combined with touch, can outperform the use of many other op-
tions (i.e. touch-only devices, mouse, Wii remotes, 6DoF wand) in 
3D object translation/rotation tasks [28, 29, 44, 56]. However, this 
requires users to calibrate their smartphone’s IMU to determine 
its correct orientation [15, 16, 50] each time they intend to use it. 
Moreover, calibration may need to be repeated, user-initiated or 
partly-automated during interaction to maintain input accuracy. 
These works demonstrate that IMUs are generally sufcient for the 
discrete detection of motion, but are inadequate for precise and 
continuous position tracking necessary for 6DoF tracking. Since 
IMUs continually integrate acceleration with respect to time to 
calculate velocity and position (dead reckoning), any measurement 
errors, however small, accumulate over time [18, 51], leading to 
"drift": an ever-increasing diference between where the device is 
thought to be located and its actual location. 

2.2 Smartphone Camera Enabled Tracking 
Rekimoto [46] proposed an approach for simultaneously deter-
mining a smartphone’s position and orientation using printed 2D 
matrix markers (square shaped barcodes on paper) attached to ob-
jects in the environment. With the appropriate phone application 
(e.g. ARToolKit [3, 24, 38]) the phone’s camera could seek out and 
identify external markers to estimate the camera’s relative position 
and orientation. Based on this technology, researchers proposed 
the "Sweep" and "Point-and-Shoot" techniques for relative cursor 
control and selection of targets on a large screen [5, 47, 58]. They fur-
thermore demonstrated techniques for 3D object manipulation [23], 
3D mesh editing in 6DoF [22], bi-manual interaction [20, 61] and 
map interactions [47]. They also combined phone movement with 
touch input [37, 39] to manipulate AR object displayed on the 
phone’s screen. Later, researchers investigated 2D interactions 
based on optical-fow analysis [9, 10, 62], making markers obsolete. 
Wang et al. [62] proposed an interesting concept that enabled 2D 
gestures for phone control that could be used outdoors. Now, mod-
ern smartphones can use more advanced computer-vision methods 
(e.g. dense SLAM [49] or similar [17, 21]) to detect the precise 
surface geometry of an unknown environment and later use it to 
estimate its own position and rotation. Such solutions empower us 
to progress beyond local 6DoF tracking. 

3 POCKET6 
The overall concept of Pocket6 is based on Apple’s Augmented 
Reality toolkit (ARKit, v1.5), which was launched in 2017. ARKit is 
an inside-out mobile tracking software which employs a technique 
known as sensor fusion. It uses data from the smartphone’s existing 
camera and IMU sensors to calculate where the device is in space 
and translates the physical location and movement into a movement 
within a virtual environment. Instead of anchoring virtual objects 
in real-world coordinates, we use ARKit for anchoring a virtual 3D 
control space, in which the phone’s location is tracked, cf. Figure 
2b. This setup allows for 2D and 3D input to external applications 
cf. Figure 2f,g. We tested Pocket6 on an iPhone X, but it could 
also be installed on other ARKit-supported devices, such as an 
iPhone SE, 6s, etc [2]. Other similar toolkits would support the 
same implementation, such as Google’s ARCore or Vuforia. Since 
Pocket6 was used as an input application only, we implemented a 
Windows program which could display output applications on an 
external display. This application communicated with Pocket6 over 
WiFi at 60 Hz. 

3.1 Control Space Auto-Calibration 
One of the primary goals of the implementation was to eliminate 
the need for users to initiate calibration procedures. As such, we 
implemented an auto-calibration algorithm which re-calibrates 
the control space position and rotation whenever users: (a) open 
the application for the frst time, (b) move their hand to a diferent 
position, or (c) change their posture or walk around, cf. Figure 2d. In 
each case, the control space follows the users’ motion, consequently 
enclosing the users’ hand at all times. This is done through the 
following three steps. 

(1) Control Space Anchoring: Firstly, based on the 3D Cartesian 
coordinate system in real-world metric units (cm) defned 
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Figure 2: A user interacts within a virtual 3D control space (visualized as a bounding box). The coordinates of the real inter-
action space are mapped automatically to the digital screen. The movement of the cursor corresponds with the smartphone’s 
motions. 

by ARKit (Figure 2a), we align the geometric center of the 
control space with the smartphone’s position (Figure 2b), 
and align their (z−axis) rotations (Figure 2c). The bound-
aries of the control space were determined by the results 
of an empirical study performed during its development, 
which suggested that the control space should refect the 
aspect ratio of the output device at the ratio of 1 cm:120 px 
(control space:output device). In our setup, a 1920 × 1080 
px screen maps to a control space of 16 × 9 cm (along the 
x− and y−axis). In 3D applications, a depth of 1920 px was 
established, which mapped to a 16 cm depth for the control 
space (along the z−axis), cf. Figure 2c. 

(2) Auto-Calibration: Whenever the phone’s position exits the 
boundaries of the control space, cf. Figure 2c, it is assumed 
that the user has changed his/her position, triggering a re-
calibration step. Since our approach also allows users to 
interact with the controlling hand pointing in a downward 
position, the axes of our control space must adapt accord-
ingly [33], cf. Figure 2e. This occurs automatically once an 
upside-down orientation is detected by the phone (i.e. the 
phone’s x−axis rotation is between 130 and 230). 

(3) Mapping: Finally, we normalize the smartphone’s position 
within the control space boundaries and forward its data (i.e. 
position, rotation, touchscreen events) to an application, e.g. 
for moving a 3D cursor, etc. (cf. Figure 2g). 

To minimize both jitter and latency, we used the 1 flter [12]. No 
other forms of signal processing was used. 

4 EVALUATION 
We conducted an empirical study with three experiments to explore 
the benefts and limitations of our proposed app-based tracking 
approach. We compared Pocket6 to a high-end, state-of-the-art, VR 
controller. Furthermore, we investigated how well can participants 
perform input from diferent body postures. All three experiments 
were conducted with the same techniques, participants, and appa-
ratus. 

Four diferent conditions (see Figure 3) were tested to compare 
the performance, accuracy as well as subjective feedback of our 
proposed condition: 

• In-Front: When using the In-Front condition, participants 
were standing while naturally holding the smartphone in-
front of their torso. 

• Sitting: Participants were sitting on a chair and their elbow 
was resting on the chair’s armrest, while holding the smart-
phone above their waist. 

• Hands-Down: In this condition, participants were standing 
while holding the smartphone in a hands-down posture. 

• Baseline: In the baseline condition, participants used an 
externally-tracked VR controller, participants were standing 
while holding the VR controller in-front of their torso. 

4.1 Apparatus 
The study was conducted in a quiet room, where the participants 
stood/sat two metres away from the display, a 1920 × 1080 pixel 
32” Samsung TV, which was showing all the tasks. For the Baseline 
condition, we used a HP Microsoft Mixed Reality headset and one of 
its Windows Mixed Reality motion controllers. Since the controller 
tracking cameras are embedded in the headset itself, we mounted 
the headset on a tripod and placed it in front of the participant, 
so that it could easily capture all their hand motions (approx. at a 
distance of 0.5 to 0.7 m). The height of the headset was adjusted 
and optimized for each participants’ chest height. The raw data 
received from the headset controller and Pocket6 were processed 
through exactly the same signal fltering, control space remapping 
and mapping algorithms. 

4.2 Participants 
In total, 12 paid volunteers (5 females, 7 males) from the local entity 
participated whose age ranged from 20 to 42 years (M = 31.5, 
SD = 5.17). They were all right-handed, none of them had previous 
experiences with 6DoF input controllers, and all of them used their 
smartphones on a daily basis. 
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4.3 Study Design 
A repeated measures within-subject design was used. We investi-
gated the participants’ performance in a 2D tracking task (1), 2D 
Fitts’ law task (2), and 3D placement task (3). These three tasks were 
built on each other with an increasing input complexity and were 
performed in sequence. Thus, participants incrementally practiced 
while they progressed from easy to more complex tasks. Each par-
ticipant was welcomed and introduced to the experiment procedure. 
After flling out a background questionnaire, they were given time 
to practice with the conditions until they felt comfortable with the 
system. Performance data was captured through computer logs and 
subjective feedback data was collected by an exit questionnaire. 

Figure 3: Study tasks and conditions: Baseline condition (a), 
2D pointing task with the In-Front condition (b), 3D place-
ment task with the Siting condition (c) and the tracing task 
with the Hands-Down condition. 

4.4 Experiment 1: 2D Tracking 
The purpose of the frst experiment was to use a tracking task 
to determine if diferent input conditions have an infuence on 
the users’ ability to precisely guide their hand in mid-air. In fact, 
we wanted to know how accurately participants can continuously 
follow a moving target with the cursor - even when the target did 
fast directional changes. 

Our task was based on the ideas of [13, 52], where participants 
had to trace a target moving on a pre-defned path. Similarly as 
in [13], we choose an narrow 720 × 270 px eight-shaped path (∞), 
and used a target movement speed of 2π seconds, which results in a 
continuous and fuid motion of the hand and defnes the duration of 
one trial (lap). We chose an eight-shaped path since it is more com-
plex compared to a circular or elliptical path and required a more 
fne-granular input from the participants. Each trial started/ended 
when the target crossed the bottom part of the left loop. From there 
the target was moving clockwise along the left loop and counter-
clockwise along the right loop. Both the participant’s-controlled 
cursor as well as the target had the radius size of 50 px. 

Each participant had to perform seven trials for each of the four 
conditions. They started by two practice trials, followed by fve 
(measured) trials. In summary, each participant performed 20 trials. 

During the experiment, we logged the Cartesian distance in pixels 
(px) between the path and cursor at a rate of 60 Hz. 

4.4.1 Results. Figure 4 depicts all traces for each condition of all 
participants. In the Baseline condition, achieved an average error of 
68.60 px (SD = 15.65), for In-Front 73.10 px (SD = 20.40), for Sitting 
73.97 px (SD = 21.26), and fnally for the Hands-Down condition 
90.10 px (SD = 29.91). 

A one-way repeated measures ANOVA (α = .05) showed signif-
icant diferences between the four conditions (F3,33 = 8.152, p < 
0.001). As the collected data did not violate the assumption of 
sphericity, no corrections were necessary. The post-hoc pairwise 
comparison using Bonferroni corrections showed that the Hands-
Down condition was signifcantly more inaccurate (on average for 
16 to 21 px), compared to all other conditions (Baseline p = 0.001, 
In-Front p = 0.014, Sitting p = 0.002). Baseline, In-Front and Sitting 
conditions did not difer signifcantly, on average for less than 6 px. 

Figure 4: Cursor traces of all measured tracking tasks, for 
each of the four conditions. The yellow line indicates the 
target’s eight-shaped path. 

We see, that the Pocket6 conditions In-Front and Sitting allowed 
participants to perform continuous hand motions as fne-granular 
and precise as an externally tracked controller, the Baseline condi-
tion. Furthermore, we can see that in the Hands-Down condition 
participants performed less accurate than in all other conditions. 

4.5 Experiment 2: 2D Pointing 
The goal of the second experiment was to evaluate 2D pointing 
and clicking performance. This experiment was based on the ideas 
of [33, 59], who used a 2D Fitts’ law task [26, 48], which is accessible 
on [35]. In this experiment, participants had to point and click a set 
of circular targets displayed on the screen. A trial was successful 
once the frst click-down and click-up events occurred inside the 
target boundaries. Each target had to be successfully selected to 
continue to the next trial. We compared two amplitudes (400 and 
800 px) and three target widths (50, 100, and 200 px) creating an 
Index of Difculty (ID) range of 1.6 to 4.1 bits. For each of the 
four conditions, participants had to fnish a block of practice trials 
with 3 targets, followed by a block of randomized measured trials 
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with 9 targets. Each block contained all combinations of amplitudes 
and widths. In total, each participant generated 216 data entries: 4 
conditions × 2 amplitudes × 3 widths × 9 target selections. 

4.5.1 Results. We analyzed the main efects of our conditions on 
the traditional measures of throughput, error rate, and movement 
time. We used repeated measures ANOVA (α = .05) and pairwise 
tests with Bonferroni corrections for the post-hoc analysis. 

The Baseline condition had a throughput of 1.86 bps (SD = 0.59), 
In-Front 1.82 bps (SD = 0.55), Sitting 1.83 bps (SD = 0.52) and 
Hands-Down 1.36 bps (SD = 0.50). A one-way ANOVA showed a sig-
nifcant diference for the four conditions (F3,15 = 8.00, p < 0.006). 
The assumption of sphericity was violated, so the Greenhouse-
Geisser corrected values are reported. The post-hoc test showed 
that Hands-Down had a signifcantly lower throughput (on aver-
age 26%) compared to all other conditions: Baseline (p = 0.027), 
In-Front (p = 0.01), and Sitting (p < 0.001). Other pairs did not 
difer signifcantly, their throughput difered on average for less 
than 2%. 

The average error-rate for Sitting was 8.3% (SD = 10.59), In-Front 
11.26% (SD = 13.54), Baseline 12.19% (SD = 12.98), and Hands-Down 
18.05% (SD = 15.31). A one-way ANOVA showed a signifcant 
diference between the conditions (F3,33 = 9.720,p < 0.001). The 
assumption of sphericity was not violated. The post-hoc test showed 
that Hands-Down had a signifcantly higher error-rate compared 
to all other conditions: Baseline (p = 0.035), In-Front (p = 0.018), 
and Sitting (p = 0.001). Also here all other conditions did not difer 
between each other in terms of error-rate. Figure 5 provides a more 
detailed overview of the results. 

Figure 5: Error rate and movement time of each condition 
for each ID. 

In terms of movement time (MT ), the Baseline condition had an 
average MT of 1508 ms (SD = 447), In-Front 1735ms (SD = 658), 
Sitting with 1712 ms (SD = 602), and Hands-Down with 2148 ms 
(SD = 933). A one-way ANOVA showed a signifcant diference 
for MT between the conditions (F3,33 = 17.5931, p < 0.001). The 
post-hoc test found that Hands-Down had a signifcantly higher 
MT compared to all other conditions: Baseline (p = 0.002), In-Front 
(p = 0.001) and Sitting (p = 0.002). All the other pairs were not 
signifcantly diferent. 

Figure 6 shows the accuracy measures of the Fitts’ law task [34]. 
The results indicate a high similarity between the Baseline, In-
Front and Sitting condition. We also found that the shortcomings 

Figure 6: Fitts’ law task accuracy measures for each in-
put device. Movement ofset (MO), error (ME), variability 
(MV ), orthogonal direction change (ODC), movement direc-
tion change (MDC), task axis crossing (TAC), target re-entry 
(TRE) 

of Hands-Down was mostly due to the movement error (ME) and 
movement variability (MV ). This indicates that when participants 
used the Hands-Down condition, their cursor movement towards 
the target was much further away from the ideal straight line (ME) 
and that their motion was also not as smooth (MV ), as in all other 
conditions. Finally, we can also report a weak correlation (R2 < 0.3) 
between movement times and IDs for all of our conditions. 

We can see that our Pocket6 conditions, In-Front and Sitting, 
allowed users an equal 2D pointing and clicking performance, in 
speed and accuracy, as the externally tracked controller Baseline. 
The Hands-Down condition on the other hand, performed slower 
and more inaccurate compared to all other conditions. 

4.6 Experiment 3: 3D Manipulation 
In the third experiment, we evaluated the 3D interaction by using a 
3D placement task (translation only), based on the ideas of Vuibert et 
al. [60]. The goal of this experiment, was to see if all four conditions 
provide the same accuracy and speed, while participants perform 
continuous stop-and-move 3D motions in mid-air. 

Similarly to [4], participants faced two squares displayed on the 
screen. These squares had to be aligned by a 3D drag-and-drop 
gesture. For each trial, participants moved their cursor (x− and 
y−axis) and grabbed a white draggable square with a tap-and-hold 
gesture. Once grabbed, they needed to align it in position and size 
with a red target square. 

Participants could re-size the dragged square by moving their 
smartphone on the z−axis of the control space. Moving the smart-
phone towards the positive direction on the z−axis reduced the 
size of the draggable square, and the other way around. For x− and 
y−axis cursor movement, we used the default control rate (120 px 
on-screen is 1 cm in control space), for square resizing this would 
be too much, therefore we used smaller mapping, where a 15 px 
increase or decrease of the square’s width corresponded to a 1 cm 
movement on the z-axis of the control space. If the two squares were 
correctly aligned, they both turned green. For correction checking, 
we used a tolerance of 10 px for both the position and scale. In 
the case of a negative match, participants had to re-grab and re-do 
the alignment. Once the alignment was successful, both squares 
disappeared and participants needed to move their 3D cursor back 
to the middle of the interaction area (x-, y- and z-axis), with the 
hint of a small cursor widget. Afterwards, the next trial was shown. 
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The position (x and y) of the target square was defned by an 
amplitude (250 or 400 px), describing a radius from the screen 
center and a randomly defned angle (ranging from 0 to 360◦). To 
represent the z-axis distance, we used four target sizes (50, 95, 
155, 200 px). The initial size of the draggable square was 125 px, 
which was also the z-axis starting position at the beginning of each 
trial. Participants completed a practice block frst, followed by a 
study block. Each block contained all combinations of amplitudes 
and target sizes. In total, each participant completed 64 trials (4 
conditions × 2 amplitudes × 4 target sizes × 2 repetition). 

4.6.1 Results. We removed 2.1% outliers caused by technologi-
cal errors and semantic errors, like participants trying to grab the 
target square instead of the draggable square. The placement time 
for the Baseline condition was on average 2201 ms (SD = 723), 
for the In-Front condition 2334 ms (SD = 913), for Sitting 2212 
ms (SD = 861), and for the Hands-Down condition with 2543 
ms (SD = 935). A one-way ANOVA (α = .05) did not show a 
signifcant diference for placement time between the conditions 
(F3,33 = 5.620, p < 0.063). The error rate was negligible for all 
conditions, less than 1%, since participants did not let go of the 
draggable square until they got the indication that the alignment 
was correct. 

As shown, the Pocket6 conditions In-Front, Sitting and Hands-
Down, performed comparable to the externally tracked Baseline 
condition. 

4.7 User Feedback 
After participants experienced all study tasks, we asked them to 
provide their unconstrained subjective feedback based on the over-
all experience across all three experiments, by rating each condition 
for ease of use, fatigue, speed, precision, and overall impression on a 
7-point Likert scale (higher is better). Finally, we asked participants 
for additional comments, suggestions and recommendations. The 
goal was to learn from initial user reactions and comments with a 
special focus on exposing diferences between our conditions 

4.7.1 Results. A Friedman test indicated signifcant results for 
the ease of use (χ2(3) = 20.00, p < 0.001), fatigue (χ2(3) = 18.00,p < 
0.001), speed (χ2(3) = 19.00, p < 0.001), precision (χ2(3) = 19.00, p < 
0.001) and general impression (χ2(3) = 18.02, p < 0.001) depending 
on which condition was used, cf. Figure 7. 

In depth analysis by performing a Wilcoxon Signed Rank test 
showed no signifcant diference between the Baseline, In-Front 
and Sitting conditions in any of the categories. However, there 
was a signifcant diference between the Hands-down and all other 
conditions in all categories (except for fatigue for the pair In-Front 
vs. Hands-down), see Table 1. 

Participants reported that Pocket6 worked surprisingly well. Al-
most all participants preferred the Baseline or In-Front condition as 
both conditions were fast, accurate, and easy to use. Participants 
reported that the ergonomics of a controller seems to be very impor-
tant. Additionally, they complained about the fact that the iPhone X 
as a bit heavier than the the VR controller. Half of the participants 
agreed that the Sitting condition was very comfortable due to the 
fact that participants could rest their elbows. However, they also 
noted that this is not always required and that it could also be a 

Figure 7: Subjective feedback ratings on ease-of-use, fatigue, 
speed, precision and general impression for each input de-
vice. 

Table 1: Signifcant pairs from the subjective feedback rating 
reported by the Wilcoxon Signed Rank test. 

serious limitation. Some participants found that resting the elbow 
made them lazy and that they didn’t want to raise their arm once 
rested, e.g. to reach for items at the upper side of the screen, this 
caused minor frustrations. 

Subjectively, all participants agreed that the Hands-down condi-
tion was the most fatiguing and hardest to use. This was mainly 
due to the long "lever" (kinematic chain from neck to fnger tips) 
that had to be precisely adjusted. Moreover, most of the partici-
pants were not used to interact with their hands down next to the 
body. Participants felt that they could not interact in a Hands-down 
posture for a long time. They all agreed that the axes mapping of 
the Hands-down condition was easy to understand. One participant 
(P3) expressed that with the Hands-down condition she was missing 
the hand-eyes coordination, since she could not observe her hand. 

Other participants explained that Sitting and In-Front both per-
formed equally good, however they both have minor trade-ofs. 
In the In-Front condition, participants could easier overshoot tar-
gets (e.g Fitts’ law tasks) and on the other side it provides more 
unrestricting motions. The Sitting condition, in contrast, seems to 
be more comfortable, but on the other hand it is more restricting, 
which was noted to be cumbersome. Some participants explicitly 
disliked the Sitting condition, explaining that it was too limited due 
to the elbow rest. 
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4.8 Discussion and Design Recommendations 
Across all experiments, we found that neither the performance 
nor the subjective opinions of the participants varied signifcantly 
between the Pocket6 In-Front and Sitting conditions. Participants 
liked the Hands-down condition the least, and were signifcantly 
less accurate with it in comparison to the other conditions. This 
was a surprising result, as we had initially assumed that the relaxed 
Hands-down condition would have been the most comfortable. 

Figure 8: Proposed solutions for improving the ergonomics 
of a smartphone. 

Participants noted that the ergonomics of larger smartphones 
(e.g. iPhone X) gives the impression of holding a heavier device. 
Although, this was only seen as a minor problem, we suggest a 
few simple add-ons that could be applied to address this issue. 
The experience of gripping the phone can be easily improved by 
using an of-the-shelf smartphone cover with additional handles as 
depicted in Figure 8. 

5 APPLICATIONS 
In this section and supplementary video, we demonstrate how 
Pocket6 can immediately be used to control a wide variety of real-
world applications (i.e. Google Earth, YouTube, text editor, Power-
Point, furniture rearranging application, cf. Figure 9). It allows for 
2D or 3D cursor control, through a combination of subtle mid-air 
gestures (e.g. spatial-translation and rotation) and touch input (e.g. 
taps and long-taps). This allows users to pan, drag-and-drop, and 
perform simultaneous point-and-zoom actions. This also allows for 
simple copying, pasting and selection tasks, which are often too 
difcult to perform using touch-only input devices. Furthermore, 
Pocket6 also allows for powerful object manipulation, such as the 
synchronous rotation and translation of 3D objects, via subtle hand 
motions. 

Participants were given a chance to test these applications after 
the formal experiments, and were asked for qualitative feedback. 
From this, we quickly learned that participants were dissatisfed 
with the size of the touchpads on the commercial VR controller (1" 
in diameter). They felt it did not give them a fne-degree of control, 
and also made it difcult to perform swipe gestures. For instance, 
in the furniture rearranging application, this even resulted in users 
needing to release and re-position their thumbs to fully perform 
desired manipulations of 3D objects. In contrast, they found the 
larger smartphone touchscreen (5.8") to be much more helpful in 
such scenarios. 

6 CONCLUSION AND FUTURE WORK 
In this note, we presented an inexpensive, accessible and easy-to-
use 6DoF input controller in the form of a smartphone application, 

Figure 9: (a) While mid-air translation are used to control 
the cursor, swipe gestures allow synchronously zooming out 
and in of the map. (b) By clicking and translating the phone 
we can select text and drag it over multiple windows to the 
target application. (c) By translating the phone and fnger 
swipes we can perform easy and subtle one-stroke 3D inter-
actions, as 3D furniture rearrangement. 

which uses a simple and efcient auto-calibration algorithm to adapt 
the users’ control space whenever they change their body position, 
orientation, or posture. We conducted three studies to evaluate its 
usability in diferent conditions. Our results demonstrated that with 
Pocket6, users can achieve a high tracking accuracy in both 2D 
and 3D interactions. This can be done with no additional external 
hardware (e.g. external cameras for tracking). Furthermore, users 
do not need to perform large hand motions. In addition to these 
studies, we demonstrated how it can be used to control a variety of 
real-world applications. 

In the future, Pocket6 could be extended in multiple ways. For 
example, it can be enhanced to leverage phone-enabled haptic or 
audio feedback as well as touch pressure-sensitivity. While we 
explored its use in a controlled-setting, it can also be explored in 
situations where users are on-the-move. Finally, we foresee that our 
work could allow other researchers to extend upon their very recent 
and interesting approaches; for instance, it could be used in collab-
orative 3D object manipulation [19], spatial design ideation [57] or 
cross-device interaction scenarios [42], which are currently limited 
by the use of 3DoF input-devices. 
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