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Abstract—This paper presents a novel approach to address
the challenges associated with the long-term use of conductive
textiles as sensors, a critical area of research for the sustainable
use of smart textiles. The key advancement over the existing
state-of-the-art is the development of simple techniques for
compensating for the effects of aging and degradation effects in
mobile scenarios on resource-limited embedded systems. Through
accelerated aging tests and cyclic stress tests, we demonstrate
how integrated measurement circuits can be used to detect
and compensate for aging effects. We also provide a software-
based solution to complement mechanical protective measures.
We were able to show that after the initial calibration and model
determination, no further communication with a server structure
is required for the adaptation of sensor models or their drift
compensation.

Index Terms—Sensor Drift Compensation, Wearable Sensors,
Smart Textiles, Embedded Systems

I. INTRODUCTION

By configuring the textile and conductive material in pro-
duction, unobtrusive sensors [1], [2] and actuators [3] can
be manufactured. The range of applications for these sensors
and actuators extends from human-machine interfaces [4],
[5] to body-worn sensor systems [6] with additional appli-
cations in protective, work or leisure clothing. The selection
of conductive materials affects the overall conductivity and
electrical characteristics [7], the degradation of the composite
material induced by wear and behavior and the associated
service life [8]. Since the separation and recycling of these
materials at the end of the product life cycle involves con-
siderable effort [9], [10], improving useful life is crucial to
sustainability [11] and the usability of the products. This is
especially true for products containing silver and copper [12],
[13], which require large amounts of energy to recycle [14].

Despite the current interest in research, there are still chal-
lenges and problems that need to be solved for the widespread
and durable use of textile sensors. The first problem is the
durability of prototypes, which is usually defined by load
cycles until failure [15], while information on progress is
often dismissed. In previous work, we have attempted to
address this problem using real-world examples. The behavior
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of conductive textiles such as resistive [2], capacitive [16] and
inductive [17] sensors, as well as conductive tracks [18] and
networks [6] has been investigated and characterized. We have
also presented a new approach for an automated test tool to
characterize the behavior of conductive textiles in an iterative
loop for rapid prototyping, simulation of new sensors, and the
creation of models for the degradation process [19].

Another problem with respect to textile sensors is that there
is little research and literature on the aging of conductive
textiles, with the exception of [20]. While the aging of
traditional textiles has been extensively studied [21]–[23], the
introduction of conductive elements adds a new layer of com-
plexity due to their unique functional aging dependencies. To
the best of our knowledge, no methods have yet been explored
to compensate for degradation and aging in conductive tex-
tiles, particularly on resource-limited devices. Therefore, we
investigated the influences of mechanical aging, particularly
by the abrasion of planar coatings in [24]. The behavior under
tensile, compressive and chemical stress was investigated
in [8]. The behavior of conductive textiles under the influence
of washing by simultaneous chemical and mechanical abrasion
was studied in [18]. The determination and detection of defects
is currently based on either electrical resistance [25] or optical
inspection [26]. However, there are a variety of electrical
measurement methods that can provide a better determination
or other information on the condition of the material, which
are not currently used [27]. We have provided a comprehensive
summary of suitable electrical measurement methods in [27]
with basic aging detection algorithms in [18] and [24]. This
was done at the use case level, as they are highly individual
in their behavior.

The rise of data-driven compensation approaches has signif-
icantly influenced the field of sensor data acquisition, offering
promising solutions to compensate for errors and degradation
over time [28]–[30]. The application of machine learning
techniques to these data has shown potential to improve the
accuracy and reliability of the data [31]. However, when
considering mobile applications, the feasibility of machine
learning is constrained by factors such as computational
power, hardware resources, and energy limitations. Given these
constraints, our research has chosen to focus on traditional
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and well-established methods of drift compensation. We aim
to adapt these methods for use on embedded devices, ac-
knowledging that the implementation of machine learning on
resource-limited devices is beyond the scope of this work.
This approach aligns with our commitment to practical and
sustainable solutions for the long-term use of conductive
textiles as sensors.

Various methods can be used for drift compensation, each
with its own advantages and disadvantages. Recursive Least
Squares (RLS) [32] is suitable for online applications, but its
drawback lies in its high computational complexity. Kalman
filtering [33] provides optimal estimation, but requires precise
system modeling and is computationally intensive. Support
Vector Regression (SVR) [34] is effective for nonlinear drift,
with the clear benefit of requiring careful parameter selection.
Gaussian Process Regression (GPR) [35] offers flexibility
but comes with computational expenses. Ensemble methods
improve accuracy while introducing increased complexity.
Bayesian inference [36] handles noise and drift but is com-
putationally demanding. Fuzzy Logic Control [37] handles
non-linear drift but exhibits tuning complexity and limited
interpretability. In particular, linear regression [38] provides
the advantage of efficiency, making it a desirable option for
drift compensation, if the application allows its use.

II. CONCEPT

The example of a textile sensor used in this paper was
knitted on a KARL MAYER STOLL flat bed knitting machine
of type ADF 530-32 KI W Multi Gauge, at gauge E 7.2. It
is made up of Twill knitting patterns, which are repetitions
of knit-miss-knit-miss sequences shifted by one needle for
each subsequent course (cf. Fig. 1). The high number of
miss stitches makes the fabric highly stable along courses
(horizontally) and highly extensible along wales (vertically).
As for the topology, the knitted fabric consists of a supporting
non-functional substrate layer knitted on the front bed and
an augmented sensing part knitted on the opposite bed. A
resistive yarn is used for the sensing field, and the top and
bottom edges are connected by conductive traces that lead
to the edge of the textile to connect the readout electronics.
Both faces are closely interconnected by tucking the yarn of
the front face with each of the loops of the resistive yarn
on the back bed. For resistive yarn, we used eight threads of
Shakespeare® Resistat P62041, which is a den 100/24 polyester
fiber with a carbon sheath and a linear electrical resistance
of 10 MΩ/m. For the conductive traces, we used two silver-
coated Shieldex® threads Madeira HC402, which is a PA yarn
with den 260 and an electrical resistance of <300Ω/m. Four
PES threads (den,150/30 PES from TWD Fibers GmbH) were
plated together with two Lycra threads (den,140 Lycra core
covered with PES den 150/20) as the support substrate to
reduce wear-out effects.

However, the problems described for the sensors with
extended dwell time also occur with other sensor types and

1https://shakespeare-pf.com/product/polyester/
2https://www.shieldex.de/products/madeira-hc-40/

materials, such as embroidered, screen-printed, or woven sen-
sors. A picture of our knitted sensor with the respective tensile
direction and underlying structure is shown in Fig. 1.

Fig. 1. Image of our knitted textile sensor. The force is applied along the wales
(vertically) of the material. The sensing material is warped horizontally in wale
direction due to the elasticity of the sensor material as well as the accumulation
of material at the top and bottom. The knit-miss-knit-miss structure is shown
in the upper right corner.

The first step was to extend a test environment that mimics
the conditions under which the sensors will be used to collect
data during accelerated aging tests. In the test environment cre-
ated, first presented in [7], the strain-sensitive textile is pulled
to a predefined length and the resulting force and resistance are
measured. The next step is to collect calibration data, which
is done by placing the textile sensors in the test environment
and recording their output. The output or measured resistance
of the textile is then compared with the actual values of the
measured parameter, such as the end position of the sled or
the resulting elongation. The elongation was calculated by
measuring the change in length from the initial length at the
resting position. Calibration coefficients are used to adjust
the sensor output to match the actual values of the measured
parameter. This is done by applying a mathematical formula
that maps the sensor output to the actual measured physical
parameter. A simple example of such a formula would be a
linear regression equation. Once the calibration coefficients are
calculated, the next step is implementation on the embedded
device. The calibration coefficients are typically stored in the
read-only memory (ROM) of the microcontroller or in the
software (in flash) that interfaces with the raw sensor readings.
They are then used to adjust the sensor output to match the
actual values of the measured parameter. The test environment
we used and adapted is illustrated in Fig. 2.

Compensation data or general usage behavior information
is collected over time to identify any change in sensor output.
These data are then used to identify any drift in sensor output
over time. After collecting the compensation data, the next
step is to calculate the compensation coefficients.

The compensation coefficients are used to adjust the sensor
output to correct for any drift in the sensor output over time.
The next step is again to calculate and implement the com-
pensation coefficients, which are stored in the microcontroller
or the software that interfaces with the sensors.

https://shakespeare-pf.com/product/polyester/
https://www.shieldex.de/products/madeira-hc-40/
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Fig. 2. Test system with an ESP32 (initiates the measurements),a CNC control
board and a stepper motor. The resulting forces are measured using a load
cell and a load cell amplifier. The ESP32 also measures the resistance of the
conductive textile.

The concept of drift compensation involves the same mathe-
matical algorithms and techniques used in the previous steps to
correct for drift in the sensor output and improve the accuracy
of the collected data. The signal processing step involves ana-
lyzing the sensor output over time and identifying patterns or
trends that indicate drift. The signal processing algorithm can
then adjust the sensor output to correct for drift and improve
the accuracy of the collected data. However, the requirements
for the algorithms are determined by the underlying hardware.
In our case, it is a dual-core Tensilica LX6 microprocessor
with up to 240 MHz, 520 kB SRAM, 448KB ROM, and 4 MB
Flash. This is a very powerful microcontroller which is more
than capable of collecting sensor data and generating simple
models. We chose this controller because of its popularity in
the scientific community. Therefore, the biggest requirement
is not to store too many measured values for our calculation.

The creation of models on the microcontroller has several
advantages over a more traditional approach. The traditional
approach would require measuring real-world sensor data
on the target system, which would then be transferred to a
more powerful system for model creation. The steps usually
involve some preprocessing steps, such as filtering, labeling,
and splitting into training and test data sets. The model is
then trained with the training dataset and then optimized
for embedded systems. Optimization includes pruning and
changing the datatypes of the weights used. Some target
systems even require the transition from floating-point to fixed-
point data types. Since this change is associated with a loss of
achievable accuracy, an additional evaluation step is included
to assess the accuracy of the model after optimization. In
this cycle, the optimization parameters are adjusted until the
model can be computed with sufficient accuracy on the target
hardware or all parameter options are exhausted.

The new approach implies that computation is performed
directly on the device and that data and models no longer
need to be transferred across device boundaries. While training
on a connected laptop or PC is not yet a major problem, in
practice it is not profitable to manually retrain a larger number
of devices in this way, so solutions with servers to be replaced
are used in operation. Here, centralized storage of multiple

data sources poses a potential security risk, which, by design,
cannot occur with local training. After recording, the same
steps are performed on the embedded system as on the more
powerful systems, whereby the selected models are limited by
their lower complexity from the start. A comparison of the
two approaches can be seen in Fig. 3.

Fig. 3. A) Traditional model development, where a sensors is used to collect
an initial dataset. A powerful system preprocesses the dataset and creates a
model. After training, optimization, and evaluation, the model is transferred
to an embedded system for inference. B) The embedded system records an
initial dataset, calculates statistics, and creates a linear approximation based
on a uniformly distributed training set. The statistical characteristics are later
used as a reference for degradation estimation.

III. EXPERIMENTAL RESULTS

As described in Section II, the textile sensors were mounted
on the test stand and characterized with load curves. Since
the movement of the textile already leads to a large change
in resistance even without any change in the length of the
material, a ramp with pauses at the respective change in length
was introduced as the load profile. The resistance range of the
textile at the start of the test is 3 kΩ at rest (10 cm) and 12 kΩ
under the selected load (25 cm). The resistance of the textile
was measured using several adjustable voltage dividers and the
analog to digital (ADC) input of the ESP32. In order to cover
a larger measuring range, different series resistors were used.
Accuracy and true resistance were measured using a Keithley
SMU in a four-point measurement setup. The measured values
were saved locally and also transferred to a local database via
the WLAN connection provided for visualization purposes. A
diagram of the first three measurement cycles can be seen in
Fig. 4. The purple dotted line shows the true distance, and the
yellow line shows the recorded resistance from the ESP32.
The ESP32 used the measured values shown in Fig. 4 for an
initial calibration function, with results with the smallest error
to:

Elongation[cm] = 1.7e−3 ∗RTex[Ω] + 3.864 (1)

During this initial calibration, the ESP32 knows the true
distance and the true force. The calibration function is a linear
approximation in the form of y = k ∗ x + d, where y is the
predicted value, x is the input or measured resistance, k is
the slope of the calibration function and d is the offset or
theoretical basic resistance at a distance of 0 cm. We chose this



Fig. 4. The graph shows the change in resistance in yellow with a deviation
from its resting or starting position of 10 cm in purple over three test cycles.
This shows the sensor response at the start of the test.

approach because it is the simplest way to calculate calibration
and drift in a resource-limited system.

As the textile sensor does not measure deformation when the
textile is at rest, respectively, at a length of 10 cm, it is clear
that a reduction would not lead to a resistance of 3.864 Ω at a
distance of 0 cm. The method assumes that the sensor response
is linear over a particular range of input values, and thus the
output can be represented by a linear equation. As we do not
want to measure negative deformation and therefore set the
valid input range to elongations from the initial 10 cm, we
can neglect the predicted values for the range smaller than
10 cm and above our intended 25 cm.

The linear equation can then be used to predict the sensor
output for input values within the range used for the approx-
imation. This approximation is useful in applications where
the sensor response is known to be linear, as it simplifies the
sensor behavior into a single equation. However, it should be
noted that this approximation may not be accurate for input
values outside the range used for the approximation, e.g.,
above 25 cm.

The correlation of the regression lines determined this way
is statistically significant (p < 0.01) and has a coefficient
of determination of 0.924 and a standard error of 5.5e−6.
However, this calibration function cannot be applied for a long
time because the electrical and mechanical behavior of the
textiles differs significantly after just a few hours.

The following Table I shows the minimum, average and
maximum resistance values for a test series of three days.
In the course of the measurement, all recorded statistical
characteristics increase by around 10 kΩ, with the greatest
change occurring during this period of time.

TABLE I
STATISTICS OF RESISTANCE VALUES AT START AND DURING TESTS AND

AFTER PROLONGED PERIODS OF TIME

0 h 6 h 12 h 24 h 72 h
min 3.2 kΩ 8.7 kΩ 11.3 kΩ 11.8 kΩ 12.2 kΩ
mean 8.7 kΩ 15.5 kΩ 16.8 kΩ 17.6 kΩ 18.4 kΩ
max 14.6 kΩ 22.8 kΩ 29.2 kΩ 23.4 kΩ 24.3 kΩ

Despite the significant change in resistance over a period
of 72 hours, the general behavior of the sensor largely cor-

responds to the original measurement of Fig. 4, although the
noise has increased significantly throughout the measurement
range. Since the measured resistance values are no longer in
the original measuring range after 72 hours, it is no longer
possible to assign the acting variable or the change in length.
Therefore, a second calibration function was created, which
better represents the similar behavior with new measured
values. This calibration function assumes a similar usage
pattern and compares the statistical characteristics of the last
set of measurements with the original training dataset. For
comparison, Fig. 5 shows the course over three measurement
curves after 72 hours.

Fig. 5. The graph after 72 hours shows a similar behavior, with a significant
increase in the overall resistance of the textile. The textile resistance is shown
in yellow, the change in distance is shown in purple.

If the calibration is repeated with linear regression using
the statistical characteristics by plotting both side by side, one
can see the similarity of both calibration curves. In Fig. 6 the
calibration curve of the first measurements in Fig. 4 and the
last three measurements in Fig. 5 can be seen. The box shown
here is the range of all resistance values as well as the test
lengths used in the experiments. Linear regression can also
be used to calculate the deflection of other recorded values,
guaranteeing a minimal error for the range inside the box only.
The shift of the calibration function from left to right shows
the wear-related offset. The slope of the calibration functions
is almost identical for all recorded measurement periods, since
all functions differ only in their offset on the x-axis or in the
base resistance.

IV. DISCUSSION

Due to the constant drift of the measured values from the
textile sensors, the original sensor calibration can no longer be
used after a brief period of time, like our 72 hours. Therefore,
further calibrations must be performed on the microcontroller.
Algorithms that can be used due to hardware limitations
include curve fitting, zero offset calibration, gain calibration,
linear regression, or lookup tables. Lookup tables for the
course of sensor drift assume that sensor wear always occurs
uniformly. That this is not the case has already been shown
for similar sensors in long-term load tests in [18] and [27].
Zero-offset calibration requires measurements without load or
when the input should be close to its base. As it depends on the



Fig. 6. The plot shows the initial calibration function from measured
resistances in blue. The resistance of the sensor increases steadily (shifts
right) due to the degradation of the material. After 72 hours, the red dotted
calibration curve shows the resulting error, compared to the initial function.
No resistance values overlap, a prediction with the initial curve is not possible.

application, and therefore since a force-free measurement can-
not be guaranteed, this method is not optimal for mobile use.
Gain calibration requires additional measurements at known
forces or input levels to compensate for offset and gain errors.
As mobile use is intended, a reference measurement on a test
bench, such as during calibration, cannot be a prerequisite. As
sensor characteristics remained similar during the tests shown
in Fig. 4 and Fig. 5 and only an offset of minima, maxima, and
mean values was measured, this method seems more promising
for mobile calibration. The statistics recorded directly in the
microcontroller about minimum values, maximum values, and
mean values could be used for better drift compensation by
adjusting the reference limits. After the drift was measured and
subsequent compensation in the microcontroller was achieved,
similar accuracies were achieved as after the initial calibration
was again achieved.

Another example of material degradation effects in con-
ductive textile sensors can be found in [27]. The sensor
characteristic curve exhibited overshooting behavior during
cyclic expansion. This behavior was found to depend on the
speed of movement during the test phase, with measured resis-
tance tending to exceed the speed of movement. Furthermore,
the average resistance increased over 260 load cycles. An
analysis of the test segments at the beginning and end of a
14-day test showed that the resistance measured was again
significantly higher, especially with fast movements. This trend
was observed to be linear and was found to be independent of
the applied stress model. Despite a change in resistance over
several kΩ, the overall behavior remained the same.

Another practical example from [27] was found with
repeated compressive forces. In contrast to tensile loads,
compressive forces do not result in rearrangement effects in
textiles. The same nominal values in long-term tests are more
influenced by external factors. The long-term trend showed
that resistance varies significantly with the applied forces
over the duration of the load, particularly with small forces.

It should be noted that the textile sensor in this work did
not show a linear characteristic curve, but also expressed a
logarithmic degradation of the conductivity, which makes an
adaptive calibration all the more important.

Calibrating sensors on a microcontroller provides a secure
and efficient way to process and analyze data in real-time
without transmitting it to a central server. This approach
helps protect sensitive data and reduces the risk of data
breaches. Transmitting data to a central server for analysis
requires increased bandwidth and storage capacity, which can
be costly and inefficient. Furthermore, by calibrating sensors
on a microcontroller, the device can perform real-time data
analysis and decision making, which is critical in applications
such as industrial control systems or medical devices where
timely decisions are required. The ability to process data on the
device itself minimizes the time required for data transmission
and processing, resulting in faster and more efficient decision
making.

In contrast to zero-offset calibration and gain compensation,
small fluctuations or changes in the motion pattern only have
a minor impact on the sensor calibration and thus on the mea-
sured variables. A sufficiently large amount of memory is re-
quired on the microcontroller for the calculation. Experiments
with the exponential moving average were performed to make
it easier and more resource-saving. With the knowledge of
the sensor behavior from the calibration with known nominal
values, models can be developed, which are only adjusted with
reference measurements during operation.

V. CONCLUSION

This paper presents a new way of addressing the difficulties
associated with the long-term use of conductive textiles as
sensors, a significant area of research for the sustainable use
of smart textiles. The main improvement over the current state-
of-the-art is the development of straightforward techniques for
counteracting the effects of aging and deterioration on textile
sensors in mobile scenarios, using resource-limited embedded
systems. Through accelerated aging tests and cyclic stress
tests, we demonstrate how integrated measurement circuits can
be used to detect aging and wear effects and how resource-
limited microcontrollers are employed for compensation. We
also provide a software-based solution to supplement mechan-
ical protective measures. We were able to show that after the
initial calibration and model determination, no further commu-
nication with a server structure is necessary for the adaptation
of sensor models or their drift compensation. As material
degradation is highly dependent on the type (e.g. mechanical
or chemical) and previous influences, future improvements
will include additional textiles that will mainly be used for
the detection of degradation. In this way, not only the initial
sensing element can be used for compensation, but additional
material components will be able to differentiate between
different influences. A potential extension is a classifier that
is capable of recognizing the type of degradation to optimally
compensate for sensor readings.
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