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Machine Learning Based Compensation for
Inconsistencies in Knitted Force Sensors

Roland Aigner and Andreas Stöckl
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Abstract— Knitted sensors frequently suffer from inconsistencies
due to innate effects such as offset, relaxation, and drift. These
properties, in combination, make it challenging to reliably map
from sensor data to physical actuation. In this paper, we demon-
strate a method for counteracting this by applying processing
using a minimal artificial neural network (ANN) in combination
with straightforward pre-processing. We apply a number of ex-
ponential smoothing filters on a re-sampled sensor signal, to
produce features that preserve different levels of historical sensor data and, in combination, represent an adequate
state of previous sensor actuation. By training a three-layer ANN with a total of 8 neurons, we manage to significantly
improve the mapping between sensor reading and actuation force. Our findings also show that our technique translates
to sensors of reasonably different composition in terms of material and structure, and it can furthermore be applied to
related physical features such as strain.

Index Terms— filtering, force sensor, knitting, machine learning, neuronal networks, resistive sensing, textile sensor

I. INTRODUCTION

TEXTILE based sensors are of high interest in research
and industry due to numerous beneficial properties,

such as lightness, breathability, and potential stretchability.
In particular, knits are inherently elastic textiles, due to their
geometric composition of courses of interlocking loops, as
opposed to weaves, where yarn is travelling straight. This
elasticity makes them ideal for sensing stress or strain [1]–[4]
that generally perform according to Holm’s theory [5], which
states that contact resistance R depends on material resistivity
ρ, material hardness H , contact point count n, and pressure
P , with

R =
ρ

2

√
πH

nP
.

Consequently, the overall sensor resistance drops when pres-
sure at the loop intermeshing points’ contacts is increased,
e.g., by straining or pressing. However, depending on the yarn
material properties and/or structural composition of a knitted
structure, knitted sensors usually suffer from considerable
inconsistencies that have to be addressed [3], [6]–[8], such
as settling effects, offset, overshooting, hysteresis, as well as
long- and short-term sensor drift, some of which we speculate
are due to slight structural re-arrangements of the yarn within
the fabric. Inherently, the raw measurement signal tends to se-
riously deviate from the desired output, i.e., the applied force.
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This is undesirable in several use cases since it complicates
downstream analysis of raw sensor data. Unfortunately, since
these effects are unlike common noise, traditional methods
such as frequency-domain- or Kalman-filters are insufficient
to get rid of those.

Figure 1 (top) shows an example timeline plot of a recording
of applied force and resulting sensor reading. Long-term drift
is most eminent, however short-term inconsistencies are also
apparent when zooming in (cf. Figure 1 bottom left, for a
magnification of three timeline snippets), which illustrate that
a basic mapping, e.g., by multi-point calibration is impractical
and not promising. Due to the nature of a knitted fabric, effects
like latency, hysteresis, drift, offset, overshooting, etc. (and the
interaction thereof) are innate. Furthermore, as their extent
depends also on the chosen knitting structure, which makes
their use challenging for scenarios where reliability is required.

Our main hypothesis for this work is that inconsistencies
that are reflected in the sampling data are in fact ultimately
deterministic, as their cause is in the knits’ physical and
geometrical composition, however too complex to analyze
or model manually from empirical observations. Hence, our
approach is to utilize an artificial neural network (ANN) to
learn and model those factors instead. A further objective
is to keep the computational complexity low by reducing
the number of required features and by using small-scale
networks, so our method is viable for low-end embedded
devices with highly limited computational capabilities.

In this paper, we present an easy-to-implement method
for mitigating this error, which is based on a small-scale
multilayer perceptron neural network (MLP NN) and comes
with little modeling/training effort and low computational cost.
NNs are in general frequently used for modeling complex non-
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Fig. 1: Timeline of one of our recordings using the PES sensor (top): Overlaying normalized trends of ground truth F and
sensor readings G clearly shows an upwards drift of the sensor readings. Zooming into three segments of the timeline (bottom
left), reveals inconsistencies and even contradicting effects, such as overshooting vs. underestimation in the first segment. Our
method utilizes a neural network that is trained using several smoothed sensor signals as features (bottom right). We combine
a set of those with different smoothing factors to incorporate different degrees of historic information.

linear systems, as it has been shown that even small networks
are able to well approximate any continuous function of n real
variables [9]. Moreover, MLP networks are relatively easily
trained using Backpropagation (BP) algorithms [10].

The main contributions of this paper are as follows:

• a method for rectifying inherent inconsistencies in raw
sensor data that result from the structural nature of knitted
sensors.

• description of a related feature-set that we used as an
input vector for an ANN that model several levels of
historic sensor data.

• mitigation of short-term errors, as well as removal of
long-term sensor drift, that go beyond sensor hysteresis.

• an exemplary processing pipeline including a NN of min-
imal complexity that is easily trained and computationally
undemanding during operation.

• a demonstration of the method’s transferability to sensor
knits of different structure and to different objectives
(e.g., mapping sensor data to stain instead of stress).

While there are numerous works that used Machine Learn-
ing techniques for classification, e.g., for detecting hand ges-
tures [11], sitting postures [12], or exercise activities [13],
others have used neural networks in scenarios similar to ours,
however mostly for compensating hysteretic behavior. Dang
et al. [14] used Radial Basis Function (RBF) NNs to model
Preisach hysteresis of piezoceramic actuators. Similarly, Lien
et al. [15] used hysteretic recurrent NNs in the context of
piezoelectric actuators, modeling hysteresis in the neurons’
activation function. Tong et al. [16] used Backlash-Based
Hysteresis Simulation Models to test a NN that approximates
hysteretic non-linearities. Wu et al. [17] implemented a dy-
namic NN structure based on the Hammerstein model for
dynamic error compensation of infrared thermometer sensors.

More recently, Weiss et al. [18] applied Kalman filters for
preprocessing chemical sensors’ data for downstream machine
learning. Jondhale et al. [19] combined Kalman filters with
General Regression NNs for 2D-position tracking from RSSI
signals. In the field of textile-based sensing, Atitallah et al. [20]
compared filtering methods such as moving average, moving
median, Savitzky-Golay, and Gaussian for processing data
from a sensor glove that incorporated CNT-based sensors. Vu
et al. [21] implemented an adaptive fuzzy-NN for capacitive
pressure sensors, which were based on spacer-knit structures.
Finally, Liu et al. [22] utilized RBF NNs to compensate
for hysteresis disturbance in non-affine, nonlinear systems,
however the test set consists of limited, generated data that
is furthermore repetitive.

While all those works are related, objective, material, and
use cases differ from ours and hence the techniques are hardly
transferable. To our knowledge, there is so far no related work
applying NNs for data rectification of knitted piezoresistive
stress/strain sensors targeted at random, real-world actuation.

II. SENSOR IMPLEMENTATION

Our sensors utilize a widespread knitting pattern that is
often, however inconsistently, called ”Twill” in the textile
industry, due to its structural similarity with a Twill Weave.
It consists of courses with alternating knit and float stitches,
shifted by one needle every other row (cf. Figure 2a) . The
high number of floats results in exceptional stability along
course-direction and high elasticity along wale-direction, when
compared to more straightforward knits, such as Plain or
Double Jersey [23]. In this regard it exhibits a characteristic
similar to a Cardigan, however with orthogonal anisotropic
behavior, which can be an advantage in certain use case
scenario, where omni-directional elasticity is not desired.
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Fig. 2: Closeups and knitting patterns of the Twill based knitting structures (a): for the PES- (tubular structure, left), and
Lycra (connected, i.e., PES tucked to back-face Resistat, right). PES sensor patch (b), with conductive yarn traces connecting
the resistive area (black) on both upper and lower ends. We evaluated our sensors using a custom-built tensile tester which is
equipped with a force cell (c).

Since a Twill can be knitted on a single needle bed, the
opposite bed is available for additional structures. We decided
to apply our knitted sensors on a substrate carrier structure, by
knitting a Twill consisting of PES on the front bed and another
Twill using resistive yarn on the back bed, to have the sensor
part completely covered by the PES on one side for protecting
it from abrasion. Furthermore, this gave us better control in
balancing for a uniform stability across the whole fabric, when
compared to integrating a sensor patch as an Intarsia [11]. Note
that this requires the two faces to be connected to not fall
apart; we did this by tucking the resistive yarn to the PES at
the outer wales of the sensor area produces a tubular structure
(cf. Figure 2a, left).

From a previous study [24], we learned that adding Ly-
cra to the substrate can significantly improve elastic recoil,
minimizing hysteresis. We therefore fabricated two variations:
one with pure PES-substrate, one with additional Lycra. Since
the resistive face is not complemented with Lycra, we tightly
connected front and back faces for these sensor patches, by
tucking the substrate to the sensor knit for every loop (cf.
Figure 2a, right), to prevented interference from resistive face’s
lagging behind the elastic substrate. We decided to include this
additional version in our evaluation, to estimate how well our
method translates to sensors of different design.

For the substrate carrier, we used a den 150 PES from
TWD Fibres GmbH, and for the Lycra thread we used a 140
Lycra core covered with PES den 150/20 from Jörg Lederer
GmbH. For the resistive sensing areas, we used Polyester-
based, Carbon-sheathed Resistat P62041 from Shakespeare®

with den 100/24 and ∼10 MΩ/m. For the connector traces, we
used silver-coated PA-yarn Madeira HC402, with den 260 and
<300Ω/m. All our patches were knitted on a flat-bed knitting
machine of type ADF 530-32 KI W Multi Gauge from KARL
MAYER STOLL, at gauge E 7.2. For more details regarding
materials and fabrication of our sensors, we refer to [24].

1https://shakespeare-pf.com/product/polyester/
2https://www.shieldex.de/products/madeira-hc-40/
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Fig. 3: Due to different knitting structures and material com-
positions, the two sensors operate in different force ranges
when actuated using identical trajectories.

III. DATA ACQUISITION

For collecting training and test data, we used a custom-made
tensile tester, which we built from a CNC milling machine (cf.
Figure 2c). The clamps for attaching the patches at both ends
featured needles at 2 cm distance to secure the textile against
slipping. The moving actuator was equipped with a single-
point load-cell with nominal load of 10 kg (Sauter CP 10-3P13)
and was sampled at ∼40 Hz by an ADS 1231 24-bit Delta-
Sigma ADC4. Since sensor resistance readings were slightly
noisier, we supersampled with 128 Hz via a simple voltage
divider with a 606 kΩ reference resistor. We used an Adafruit
ADS1115 16-bit ADC5 for sampling, buffered readings and
averaged values in windows of ∼25 ms, again resulting in a rate
of ∼40 Hz for our final samples. Measurements for force and
resistance, as well as actuator displacement and timestamps
were captured into CSV files by the MCU firmware. A single
ESP32 on an Adafruit HUZZAH32 Feather board6 was used
for sampling and recording to SD card.

The tensile tester was controlled by Art-Soft Mach4 CNC
Control Software (v4.2.0), running on a Windows 10 PC. To
simulate pseudo-natural motion for reasonably representative

3https://www.kern-sohn.com/shop/en/products/
measuring-technology-components/CP-10-3P1/

4https://www.ti.com/product/ADS1231
5https://www.adafruit.com/product/1085
6https://www.adafruit.com/product/3405
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TABLE I: Statistics of our three generated actuator trajec-
tories. Velocities were around 1 mm/s, with a maximum of
4.930 mm/s.

v [mm/s] a [mm/s²]
trajectory max mean SD max mean SD

#1 4.142 0.943 0.593 19.05 1.397 1.303
#2 4.930 0.979 0.617 18.61 1.497 1.343
#3 4.039 1.030 0.644 19.25 1.546 1.414

actuation of the sensors and collecting corresponding sensor
data, we generated G-code trajectories based on Perlin Noise
[25], [26], to control the actuator along the x-axis. Our
objective was to generate non-repetitive trajectories, so we
could guarantee our resulting model would not merely learn to
repeat a specific pattern and instead be applicable for random
actuation. We created three of those trajectories, to get one
data set for training our ML models and two for testing their
performance. Based on pre-evaluation of the sensors [24],
we chose the amplitudes of our trajectories to move in an
approximate range of 0% to 30% extension. Maximum, mean,
and SD of velocities and accelerations can be found in Table
I. We collected data for both of our sensors, i.e., PES-only
(”PES”) and Lycra-enhanced (”Lycra”) variants. Note that this
resulted in different force ranges, due to the difference in
firmness (cf. Figures 3, bottom). Our objective was to test our
method on sensors of slightly different structure and material,
to get an estimation of its portability between sensor designs.
The total duration of our actuation process and the time-span
we recorded was ∼23 minutes each.

IV. DATA PROCESSING

For reasons of simplicity, our presented method was not
designed to take timing into account yet, hence it requires
uniform sampling periods. However, we noticed the sampling
frequency was not perfectly constant (µ=41.5 Hz, σ=14.2),
as a consequence of our multi-component setup. We further
noticed the targeted frame rate of ∼40 Hz was higher than what
our method required, since results did not significant change
after downsampling to 20 Hz. Resampling with even lower
rates (e.g., 10 Hz) seemed to yield worse results, though, we
therefore re-sampled our recorded force and resistance data to
20 Hz using linear interpolation in between the sample points.

The main objective of our work is to infer force-data
from the raw measurements that were taken from the sensor,
meaning both trends should be as identical as possible, which
is not the case with raw measurement data (cf. Figure 1).
Hence, we argue the coefficient of determination r2 is a
reasonable metric for quantifying this property and hence to
judge about the performance of our approach7. However, since
force F and sensor resistance R are inversely proportional,
we utilize the sensor conductivity G = 1/R instead of the
resistance. Furthermore, since both F and G cover largely
different ranges, we normalized both to identical ranges to F
and G, by removing mean and scaling to unit variance using

7Note that we use the less-common lower-case notation r2 to avoid
confusion with the sensors’ electrical resistance R.

the StandardScaler from the scikit learn Python package8.
This pre-processing step is also beneficial (and in fact rec-
ommended [27]) for better performance of machine learning
estimators later on. Hence, we calculate the coefficient of
determination with

r2(X,Y ) = 1−
∑

i (xi − yi)
2∑

i (xi − mean(Y ))
2

substituting X with normalized force measurement F , and Y
with pre-processed and normalized conductivity measurement
G. To quantify the performance of our machine learning
model, we then use the prediction p for Y instead.

After pre-processing our raw data, we calculated our initial
r2 scores as baseline values with 0.423, 0.471, and 0.526
for the recordings with our PES version and as 0.703, 0.667,
and 0.734 for those with the Lycra version (cf. Table IV). It
is already eminent that the performance of our Lycra patch
is superior, which is in line with previous findings [24].
However, we first focus on the most basic implementation,
without additional Lycra, which we expect to benefit most
from improvement by computational means.

As mentioned, our hypothesis is that an ANN is able to
model the knit’s state and infer the actuation from an (seem-
ingly randomly) inconsistent sensor reading. For example,
it seems reasonable that sensor offset and settling speed is
affected by recent elongation. From that follows, that there
needs to be historic data available for the current prediction;
this can either be implemented by a feedback mechanism, or
otherwise by choosing input features that include temporal
information. For sake of simplicity, we decided for the latter.
Using a number of n previous samples within a certain time-
frame as features is not promising since this would result in
a very high number of features and would therefore rapidly
increase complexity of computation and network topology,
increasing the risk of overfitting. Furthermore, this approach
would highly depend on the sample-rate. Instead, we decided
for providing historic data in the form of several smoothed
signals, with varying degrees of responsiveness. We utilized
exponential smoothing [28] with

y(t) = αxt + (1− α)y(t− 1) ,

where α is a smoothing factor in range [0 1]; i.e., the lower the
value for α, the higher the drag. We noticed initialization with
y(0) = x0 introduced too much bias for the signals with high
drag, therefore we initialized with the mean of samples values
within a window of M samples, y(0) = mean(x0 . . . xM−1).
For calculating an adequate window-size that is depending on
drag and sample rate f , we empirically found M = ⌈1/fα⌉
delivers reasonable initialization values. By filtering the sensor
conductivity G with a set of smoothing factors αi, we gain a
set of N filtered sensor signals Gi, reflecting different degrees
of temporal data (cf. Figure 1, bottom right), which represent
the elements of our feature vector. Note that our exponential
smoothing implementation does not take timing into account,

8https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.StandardScaler.html
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TABLE II: Smoothing base value a and factor count N were
varied for determining factors αi, e.g., a = 10 and N = 3 result
in A = (10-1, 10-2, 10-3). The values for our initial factors that
we used as baseline were adjusted manually and therefore not
calculated from a and N .

a N A = (α1 . . . αN )

- - (0.5, 0.1, 0.025, 0.0025) baseline
2.5 4 (0.4, 0.16, 0.064, 0.0256) αi = 1/ai

2.5 7 (0.4, 0.16, . . . 0.0016384)
2.5 10 (0.4, 0.16, . . . 0.000104858)
5 4 (0.2, 0.04, 0.008, 0.0016)
5 7 (0.2, 0.04, . . . 0.0000128)
10 3 (0.1, 0.01, 0.001)
10 4 (0.1, 0.01, 0.001, 0.0001)

TABLE III: Number of hidden layers’ (HL) neurons were de-
termined by building the products of base sizes with topology
vectors and flooring the results, e.g., ⌊6 × (½, 1, ¼)⌋ would
give three layers with 3, 6, and 1 neurons, respectively. After
removing all identical permutations as well as those containing
sizes <2, 114 unique variations remained.

parameter variations

HL base sizes 2, 3, 4, 6, 8, 12, 16, 32
topologies ( 1, 1 ), ( 1, ½ ), ( 1, ¼ ),

( 1, 1, 1 ), ( 1, 1, ½ ), ( 1, ½ , ½ ), ( 1, ½ , ¼ ),
( ½ , 1, 1 ), ( ½ , 1, ½ ), ( ½ , 1, ¼ ),
( 1, 1, 1, 1 ), ( 1, 1, 1, ½ ), ( 1, 1, ½ , ½ ),
( 1, ½ , ½ , ½ ), ( 1, ½ , ½ , ¼ ), ( 1, ½ , ¼ , ¼ ),
( 1, ¼ , ¼ , ¼ ), ( ½ , 1, 1, 1 ), ( ½ , 1, 1, ½ ),
( ½ , 1, ½ , ½ ), ( 1, ½ , ½ , ½ )

which is a further reason we re-sampled our data to a constant
rate of 20 Hz.

Multi-layer Perceptrons (MLP) trained by back-propagation
(BP) algorithms are commonly used for function approxima-
tion, we therefore used the MLPRegressor9 of scikit learn, with
relu activation function and maximum iterations of 10,000.
Note that MLPs are particularly sensitive to feature scaling
[29], which makes our previously described pre-processing
mandatory.

We started with experimental α values of 0.5, 0.1, 0.025,
and 0.0025, which gained promising results, therefore we kept
this set as a baseline. From there, we tried different sets of
smoothing factor vectors A = (α1 . . . αN ), with αi = 1/ai,
modifying a and N to get several sets of different sizes and
granularity. Since we found that data smoothed with α values
below 10-4 held too little information, we mostly refrained
from going beyond those. Apart from feature vectors, we
varied the ANN’s hidden layer sizes (i.e., neuron counts)
and topologies. We did not go beyond neuron counts of
32 and beyond 4 hidden layers, since we started to notice
frequent overfitting at these values. We then empirically tested
all permutations10 of those parameters to find the optimal
configuration (cf. Table III for a complete listing).

9https://scikit-learn.org/stable/modules/
generated/sklearn.neural_network.MLPRegressor.html

10after removing duplicates and those including layers with less than
2 neurons, both due to flooring the products, 114 network permutations
remained. Testing those with all 8 variations of A, this resulted in 912
candidates for our pipeline.

TABLE IV: r2 of our initial (pre-processed) and predicted data.
We present results of our two test sets (A, B), as well as the
training sets (t), which are non-representative, but are included
for sake of completeness. PES show highest gain from our
approach; the Lycra patches ultimately yield higher scores.

r²(F,G) r²(F,p) gain

PESt 0.423 (0.781) (85%)
PESA 0.471 0.791 68%
PESB 0.526 0.767 46%
Lycrat 0.703 (0.841) (20%)
LycraA 0.667 0.830 24%
LycraB 0.734 0.828 13%

α
n
G(t)+(1-α

n
)G
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Fig. 4: We feed pre-processed (re-sampled and normalized)
data G into a number of exponential smoothing filters using
different smoothing factors and use the results as feature vector
for our neural network. In our tests, the combination of a =
2.5 and N = 7 with hidden layer sizes (4, 2, 2) resulted in the
best r2 score.

V. EVALUATION AND DISCUSSION

A. Results

Our tests showed that a low number of hidden layers worked
well in most cases and increasing them did not considerably
improve scores. Occasionally, adding a fourth hidden layer
did even degrade results, but this seems also to be subject
to network topology. Overall, hidden layer base sizes of at
least 4 were required, otherwise the resulting models would be
unusable. In terms of features, we saw that smoothing factors
resulting from a = 10 (with both N = 3 and N = 4) did
not perform well. We speculate this is because the smoothing
factors are too far apart and the resulting low number of
Gi features include too little historical information. Overall,
our variations with a = 5 performed better, however the best
scores were achieved with a = 2.5 and N <10. A spreadsheet
including all the scores of our network variations can be found
in the supplementary material.

Our systematic tests resulted in the best r2 score for the
parameter-combinations of a = 2.5, N = 7 (i.e., A = (0.4,
0.16, 0.064, 0.0256, 0.01024, 0.004096, 0.0016384), HL base
size = 4, and topology = (1, ½, ½), which gives neuron counts
of (4, 2, 2) (cf. Figure 4). Predictions of force values from our
training sets resulted in r2 values of 0.791 and 0.767 (PES), as
well as 0.830 and 0.828 (Lycra), producing highest gains for
the PES variants. Figure 5 shows the result of test set #1, with
p overlaid on G and F . It is striking that the long-term drift
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was removed. Inspection of section snippets (cf. Figure 5, left)
reveal considerable improvement over the pre-processed input
signal that goes well beyond what could be achieved with more
basic transformation techniques. Using identical parameters,
the network was also trained for the Lycra test-set, and as can
be seen in Figure 5 (right), there is similar improvement. In
general, however, we can observe occasional underestimation
of peaks, while the model seems to perform very well at low-
force areas.

B. Further Experiments

A reasonable question at this point is whether or not our
method translates to different kinds of input data. Since the
majority of related work utilizes knitted sensors not primarily
as force sensors but rather as strain sensors, we ran our
recordings of actuator offset through the same pipeline to see
if our technique also translates to this objective. As mentioned
above, d also drifts over time which may be the initial cause
of this long-term drifting effect, since G does not considerably
drift relative to d, however both trends still differ significantly,
with initial r2-scores between 0.260 and 0.319 (PES), as well
as 0.337 and 0.490 (Lycra). Using our unmodified processing
pipeline as presented in Figure 4, we were able to boost those
scores up to 0.699 (PES), and 0.669 (Lycra) for the test sets
(further details can be found in the supplement). This implies
that our method works exceptionally not only for force as a
main metric.

A related question concerns variation of actuation speed and
amplitudes, since for our main study, we generated trajectories
that feature similar statistic values for (cf. Table I), in order
to assess consistency of our results. To estimate how well the
proposed method translates beyond that specific data, we gen-
erated more trajectories with strain values up to 50%, actuator
velocities up to 14 mm/s (mean: 2.87 mm/s, SD: 2.06 mm/s),
and accelerations up to 65.54 mm/s2 (mean: 9.27 mm/s2, SD:
7.87 mm/s2) and recorded data using the PES patches. We
noticed that initial r2 scores were already higher (median:
0.644), suggesting that sensors are more consistent for higher
actuation speeds. With applying our model, we could still
boost the r2 by 15% (median). One extreme case was a rise
from 0.349 to 0.795, thus a gain of 128%. However, we
judged that G1, i.e., the NN input feature with least smoothing,
already lagged too much from the original. We countered this
by reducing smoothing, lowering a from 2.5 to 1.75, which
resulted in α1 = 0.57, etc., which resulted in a better r2 gain
of 24% (median). Summarizing, this shows that our presented
method does translate to different data, however, fine-tuning
smoothing factors against an estimated range can still be
beneficial. In yet another experiment, we applied a NN trained
with data from the initial trajectories to the data with the newly
generated ones. Using the initial values for smoothing factors,
we were able to increase r2 by 23% (median), meaning already
pre-trained networks can also be reasonably applied across
different data sets exhibiting different statistic distributions.

In terms of feature choice would like to note that we
tried several variations, e.g., including additional information:
first, we experimented with slope values, i.e., first derivatives

of each of the smoothed signals Gi, as well as a set of
smoothed first derivatives of G, however we found those
did not improve prediction quality significantly as they seem
redundant. Second, we briefly experimented with features
taken from the frequency domain by calculating windowed
FFTs, however the signal turned out to contain little infor-
mation beyond very low frequencies and we did not go into
great lengths to exploring this direction any further. In terms
of alternative machine learning methods, we experimented
with linear11, polynomial12 (3rd and 4th order), and random
forest regressors13, but were not able to produce results of
comparable quality.

Furthermore, we briefly tried re-sampling to rates other than
20 Hz, namely half and twice the frequency. We got slightly
worse results with 10 Hz and similar results with 40 Hz, so we
kept our initial value of 20 Hz for data pre-processing.

C. Discussion & Limitations
The results show that our approach performs remarkably

well in improving the mapping from sensor reading to physical
actuation. The fact that our processing pipeline is exceptionally
small and requires little computation effort, makes it viable for
applications in highly limited environments and platforms. We
would like to note that due to the nature of our method that is
based on features from smoothed sensor readings, as opposed
to resorting to a learned hysteresis-model, it is reasonable to
assume that our method adapts well to permanent effects, such
as chemically and mechanically induced material degradation.

We showed that our method proves successful also when ap-
plied to sensors with considerable differences in structure and
elastic behavior. Furthermore, the network can be trained to
successfully predict not only force but also strain values. Fur-
ther experiments with actuation of varying strain amplitudes
and speeds suggest that our method translates well between
different input data, although fine-tuning parameters can be
beneficial. We believe that this can be evaded by increasing
the number of features Gi, with smaller smoothing factor steps
in-between. This will increase computational complexity and
possibly add redundancy, however, the resulting model could
be more versatile. However, we believe it may be possible to
infer optimal a and N from a given data set with reasonable
effort. We see great value in implementing a fully adaptive
system this way and plan to investigate in this direction in
future work.

We do acknowledge a few limitations of this work. First, we
did not go into great length in investigating entirely different
ANN topologies, such as Deep Belief Networks [30], Extreme
Learning Machines [31], Echo State Networks [32], etc. We do
not expect serious performance gains by changing the topology
type, however it will be an interesting direction to explore, and
we leave this for future work.

11https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LinearRegression.html

12https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.PolynomialFeatures.
html

13https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.
html
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AIGNER AND STÖCKL: MACHINE LEARNING BASED COMPENSATION FOR INCONSISTENT KNITTED FORCE SENSORS (XXXX 2023) 7

0 200 400 600 800 1000 1200 1400
t [s]

1

0

1

2

3

4

F

F G p

3

2

1

0

1

2

G

prediction PES #0

20 30 40 50 60 70
t [s]

1

0

1

2

3

4

F

F
G
p

700 710 720 730 740 750 1300 1310 1320 1330 1340 1350

prediction PES #0

3

2

1

0

1

2

G

20 30 40 50 60 70
t [s]

1

0

1

2

3

4

F

F
G
p

700 710 720 730 740 750 1300 1310 1320 1330 1340 1350

prediction PES #1

2

1

0

1

2

G

20 30 40 50 60 70
t [s]

2

1

0

1

2

3

F

F
G
p

700 710 720 730 740 750 1300 1310 1320 1330 1340 1350

prediction Lycra #0

3

2

1

0

1

G

20 30 40 50 60 70
t [s]

2

1

0

1

2

3

F

F
G
p

700 710 720 730 740 750 1300 1310 1320 1330 1340 1350

prediction Lycra #1

2

1

0

1

G

Fig. 5: Our results show that prediction values p rectify sensor inconsistencies G exceptionally well. Most striking is the
removal of long-term drift (top). When looking more closely at segments (left), we see that p aligns well with ground truth
data F in most cases. The same method also translates well to our Lycra-variants using different yarn material and knitting
composition.

Second, we do not have data that goes beyond our roughly
23 minutes recordings. We did observe in prior evaluations,
that drift decreases in a logarithmic manner, therefore we
expect the most challenging effect of drift is to be addressed
at the beginning. Furthermore, our method presents a multi-
purpose and adaptive way of handling the issue in that it
provides a means of modeling long-term drift in the form
of highly smoothed sensor signals (cf. G6 and G7 in Figure
1, bottom right) and use this as highly compact and low-
complexity features. In terms of signal peaks of high promi-
nence that are sometimes underestimated (cf. Figure 5 PES
#0 at second 748) or cropped (PES #1 at second 740), it is
reasonable to believe that further training with data that is
more specific to this issue will rectify the model accordingly.

Third, we present a method of predicting scaled data.
Mapping the range to meaningful physical values will require
some initial calibration step. Note that this calibration would
also be required without our pipeline, since, e.g., readings in
Ohms or Siemens need to be translated to Newtons either way.

Fourth, we mentioned we re-sampled our data to a constant
sample-rate, since our exponential smoothing filters are not
considering timing data and are therefore sensitive to varying
∆t. We believe this can be easily overcome by ensuring a
more consistent sample rate in the firmware and by taking
timing data into account for smoothing. As mentioned, the
actual ADC and firmware would be able to sample at a much

higher rate (128 Hz in our case) and the solution comes down
to implement a solid down-sampling routine, that outputs at a
reasonably constant rate.

Fifth, for this investigation, we initialized our exponential
smoothing filters with the mean of the first M samples to
avoid biased starting values (cf. Section IV). Applying this
in a real-world application would require a short duration for
initialization for collecting those samples. However, we did
not see this as a major limitation and not as the core of this
work. We trust it is not a serious challenge to find alternative
initialization methods to set y(0) as there are numerous ways
to do so [33], or to substitute the entire smoothing filter, as
we do not believe our method relies on this exact method for
smoothing.

No doubt, the very best solution to specific sensors may vary
in detail, slight modifications of the network and features (e.g.,
smoothing factors and number of features) may be beneficial
for fine-tuning to the scenario at hand. However, we noticed
during our experiments that many of those slight adjustments
only result in minor improvements that may not be significant
or representative and could be subject to the particular training
data.

VI. CONCLUSION

We demonstrated a method of utilizing an ANN for correct-
ing inconsistent sampling data read from a knitted resistive
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force sensor, by pre-filtering the raw input signal and thus
providing multiple levels of temporal information as a feature
vector to the NN. Once trained, the pipeline can be used as
a real-time filter for translating sensor readings to physical
actuation data. We demonstrated our method using a MLP
NN that in its best-performing configuration requires only
three hidden layers and a total of 8 neurons to achieve
considerable improvement over the input data, which signifies
exceptionally low computational requirements and therefore
facilitates applications in a wide variety of scenarios. Although
we applied the technique to translate raw sensor data to
the trend of physical force/stress, the method can be easily
translated to related metrics such as strain, as we briefly
demonstrate in the supplement. Furthermore, we successfully
applied our technique to a knitted sensor of different structure
and behavior, which implies it translates well to slightly
different conditions, possibly even to entirely different use
cases beyond knitted sensors that suffer from similar issues,
such as considerable hysteresis and drift.
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