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1 Introduction

This document represents supplementary material for the IEEE Sensor Journal article ”Machine Learning Based Com-
pensation for Inconsistencies in Knitted Force Sensors” by Aigner and Stöckl. The following chapters present in-depth
plots as well as more detail on transferability of the proposed method to predicting strain instead of force, which was
only touched briefly in the paper, to avoid oververbosity.

2 Timeline Plots

We include additional timeline plots, complementary to the ones in the main paper: Figure 1 (top) shows input features
G1 thru G7 for the entirety of our collected data set. It is clearly visible that features with low α increasingly model
the long-term drift. The remaining sub-figures show the full timeline plots of both PES and both Lycra test sets, in
addition to the close-ups in the full paper.

3 Mapping Sensor Data to Actuator Displacement

As briefly touched in the paper, our technique works for strain/displacement data as well. To achieve the following
results we merely trained against normalized displacement d, by re-sampling actuator displacement (i.e., absolute sensor
elongation) d to 20Hz and then removing mean and scaling to unit variance using the StandardScaler from the scikit
learn Python package1. We used the exact same pipeline including initialization of y(0) for exponential smoothing
filters, as well as neural network hidden layer design, MLPRegressor activation function, etc. Figure 2 shows timeline
plots of an exemplary PES (top) and Lycra recordings (bottom).

We can see that d seems to drift along with G, however the relative drift differs in between sensor variations. Our
method adapts well to these differences: r2 values (pre- and post-prediction) can be found in Table 1, which shows
considerable gain in mapping between sensor conductivity and elongation when applying our method, with highest
gains for PES patches.

Note that the model was not at all manually adapted to the different objective; in preliminary experiments, we
found that by changing the NN’s hidden layers, we could slightly improve test scores up to 0.716. However, we believe
those minor differences are subject to the training set and do not make a crucial difference in real-world applications.

4 Notes on Enclosed Spreadsheet

In order to compare model in terms of their performance on both test sets A and B, we calculated an error metric E
from the respective r2 scores with

E =
(1− r2A)

2 + (1− r2B)
2

2
.

Values reported and color-coded in the enclosed spreadsheet nn-eval.xlsx represent according E-values, i.e., values
close to 0 indicate better performance.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

1

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html


0 200 400 600 800 1000 1200 1400
t [s]

1

0

1

2

3

4

5

F

2

1

0

1

2

G

F G G1 G2 G3 G4 G5 G6 G7

0 200 400 600 800 1000 1200 1400
t [s]

1

0

1

2

3

4

F

F G p

3

2

1

0

1

2

G

prediction PES #0

0 200 400 600 800 1000 1200 1400
t [s]

1

0

1

2

3

4

F

F G p

2

1

0

1

2

G

prediction PES #1

0 200 400 600 800 1000 1200 1400
t [s]

2

1

0

1

2

3

F

F G p

3

2

1

0

1

G

prediction Lycra #0

0 200 400 600 800 1000 1200 1400
t [s]

2

1

0

1

2

3

F

F G p

2

1

0

1

G

prediction Lycra #1

Figure 1: Features G1 thru G7 of our PES training set (top) and entire prediction results of our test sets.
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Figure 2: Plots showing d and G of PES #0 (a,b) and a Lycra #0 (c,d) test sets.
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Figure 3: Resulting predictions p show good rectification of the input signals for all of our test sets, although we can
observe occasional under-estimations of peak areas in the signal, as is the case when predicting force data (see main
paper).
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Table 1: r2 of our initial (pre-processed) and predicted data when applied to actuator displacement. We included
results of our two test sets (A, B), as well as the training sets (T) for sake of completeness. PES show highest gain
from our approach, however, the Lycra patches ultimately yield higher scores.

r²(d,G) r²(d,p) gain

PESt 0.319 (0.705) (121%)
PESA 0.319 0.699 119%
PESB 0.260 0.635 144%
Lycrat 0.337 (0.687) (104%)
LycraA 0.479 0.609 27%
LycraB 0.490 0.669 37%

5 Data Processing Pipeline

Figure 4 shows the data processing steps that are involved for both acquiring data from the sensors on the MCU, as
well as during pre-processing for training the ANNs in Python. Load cell as well as knitted sensors were sampled using
two Delta-Sigma ADCs by a single ESP32 MCU. Resistance values read from the load cell were converted to Newtons
already in the firmware. Since resistance readings of the textile sensor were slightly noisier, we supersampled with
128Hz, buffered values and calculated mean values in the firmware every 25ms. Since timing on the firmware could
not be controlled to achieve periods of 25ms precisely, we resampled to constant frequency in Python later based on
the timestamps that were recorded to the CSV file along the sensor readings. Furthermore, resistance values R were
inverted to get conductivity values G. To achieve better performace of the machine learning estimators to be used,
we normalized both F and G uniform ranges using the scikit learn StandardScaler2, which centers data round µ and
scales with 1/σ.
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Figure 4: During data recording, values of knitted sensors are super-sampled and in order to reduce measurement
noise. Within time windows of 25ms, mean values are calculated and written to CSV files, along timestamps and
data sampled from the load cell. During pre-processing for training our ML models, data is resampled to unified time
periods between samples, since our proof-of-concept does not yet take timing into account, for reasons of simplicity.

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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