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Figure 1: We implemented diferent knit-based sensors including a tubular knit stretch sensor (a, b) and a spacer knit pressure 
sensor (c, d). 

ABSTRACT 
In this demo, we present two types of knitted resistive force sensors 
for both pressure and strain sensing. They can be manufactured 
ready-made on a two-bed weft knitting machine, without requiring 
further post-processing steps. Due to their softness, elasticity, and 
breathability our sensors provide an appealing haptic experience. 
We show their working principle, discuss their advantages and 
limitations, and elaborate on diferent areas of application. They 
are presented as standalone demonstrators, accompanied by exem-

plary applications to provide insights into their haptic qualities and 
sensing capabilities. 

CCS CONCEPTS 
• Human-centered computing → Haptic devices. 
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1 INTRODUCTION 
Throughout our lives, we are surrounded with textiles. They are 
ubiquitous and can be found in clothing, furniture, on foors and 
walls, etc. From this viewpoint, textiles aford interaction with 
other omnipresent technologies, such as electronic devices. Their 
favourable properties like fexibility, breathability, and softness 
can provide a more pleasant experience for the user. In this demo 
submission, we primarily focus on knitted resistive sensors that 
provide a real-time interaction sensation. We show textile pressure 
sensors based on spacer knits [1] and textile strain sensors based 
on tubular knits. Furthermore, we show how these sensors can be 
manufactured and how they can be applied to diferent applications. 
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2 RELATED WORK 
As research on electronic textile interfaces is gaining momentum, 
we see a large variety of applications [5, 11, 13, 14], with sensing 
technologies, including capacitive [7, 12, 14], resistive [3, 8], and 
inductive [6] methods. Those sensing methods rely on textile man-

ufacturing processes which include weaving [13], knitting [9], as 
well as sewing [15] and embroidery [2] onto existing fabric. The 
groundwork for fabricating functional spacer knits was developed 
by Albaugh et. al, who investigated how to fabricate spacer fab-
rics with embedded functionality, using conductive yarn to enable 
capacitive sensing of touch and proximity [4]. 

3 KNITTED FORCE SENSORS 
Common FSRs are multi-material elements, usually printed on plas-
tic substrates. The piezo-resistive material is sandwiched between 
two conductive traces, that are in loose contact at rest. When un-
der stress, the materials’ surfaces are tightly compressed, which 
increases the contact area and consequently reduces the electrical 
resistance. We translated this concept to a single knit fabric. We 
used common polyamide (PA) yarn to provide the surrounding knit 
structure for embedding the sensor which also acts as insulator 
between the traces. 

For knitting the traces, we used a silver plated PA conductive 
yarn HC401 

from Madeira with a linear resistance of <300 Ω/m. For 
the resistive part of the sensor, we used a Resistat P6204 H100i2 

from Shakespeare Conductive Fibers LLC, a polyester yarn with 
conductive sheathing and an average linear resistance of 1.5 MΩ/cm. 
We manufactured our knitted sensors on a SWG061N2

3 
15 gauge 

fat-bed knitting machine from Shima Seiki. 
To generate the knit patterns, we used the Knitout high-level 

knit description language [10] as an intermediate format. Knitout is 
a human-readable knit program description that greatly simplifes 
manual edits and quick visual verifcation using the associated tools 
[16]. We then converted the Knitout fles to target DAT format that 
was further used in Shima Seiki KnitPaint for the generation of the 
binary machine-program fles. 

3.1 Strain Sensors 
Tubular knitted strain sensors consist of conductive thread traces 
connecting both ends of a tubular feld that is knitted on one side 
with resistive material and on the other with insulating polyamid 
yarn (cf. Figure 2a). At rest, the individual loops of the resistive area 
are in loose contact, which translates to high electrical resistance 
between the two conductive traces. Applying a strain force leads 
to tighter contact of interlocked loops and a drop in resistance. As 
the sensor’s resistance correlates to the ratio of the resistive feld 
height and width, the sensor area can easily be re-shaped according 
to the desired resistance ranges. 

1
https://shop.madeira.co.uk/hc-40-2500m-cone-(high-conductive)_hc40-xxx-

xxx.htm 
2
https://shakespeare-pf.com/product/polyester/ 

3
https://www.shimaseiki.com/product/knit/swg_n2/ 
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Figure 2: In a) the resistive tubular knit sensor layout is 
shown, while b) depicts the spacer structure with resistive 
yarns inlaid as fller material. 

3.2 Pressure Sensors 
Spacer fabrics are volumetric knits, created with nylon mono-

flaments acting as fller material being inlaid between two op-
posing knit faces in order to fll up volume and provide elasticity. 
To enhance this knit with sensing capabilities, we added a resistive 
material, inlaid alongside the nylon (cf. Figure 2 b). At rest, the fller 
structure exhibits high resistance. When compressed, the number of 
contacts increases, resulting in a drop of the overall resistance. This 
"3D" structure provides pleasant haptic feedback upon actuation. 

4 APPLICATION DEMONSTRATORS 
At UIST 2022, we will exhibit a set of diferent functional prototypes 
showing many variations of knitted sensors. We will show stretch 
sensing capabilities of resistive tubular felds, as well as the pressure 
sensing performance of our spacer knits. We will demonstrate an 
application of the stretch sensor, in which the user can close blinds 
by pulling on the fabric, emulating the movement of closing curtains. 
We will also show a use-case of a textile pressure sensor being used 
as a button to control functions of a digital UI, like scrolling. This 
application shows how knitted sensors can be used to embed digital 
functions into furniture. Attendees will be encouraged to experience 
the demonstrators frsthand and get a sense of both the haptic 
qualities and sensing performance. Additionally, we will exhibit 
non-functional samples showing additional sensor variations and 
providing more insights into possible sensor layouts. 

5 FUTURE APPLICATIONS 
Our knitted force resistive sensors ofer several potential applica-
tion possibilities. The tubular sensors could be used for detecting 
textile deformation or weight distribution of a human body in a 
free-hanging textile, for example in a baby stroller. Soft-spacer pres-
sure sensors could provide a potential replacement for foam-based 
upholstery, while providing additional sensing capabilities. Their 
convex surface structure also afords easier discoverability in out-
of-sight haptic user interfaces. The continuous input provides more 
precise user control resulting in a more reactive textile interface. 

The knitting technique also ofers a unique beneft of the one-
layered interfaces being more sustainable, as each material can be 
separated and recycled through the process of unraveling. 

Combining all their benefts, we believe knitted force sensors 
have the potential to signifcantly improve the performance and 
usability of future textile sensing as well as textile user interfaces. 
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